Nanomaterials as medicinal gas sensors described by density functional theory: a comprehensive review.

IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Medical Gas Research Pub Date : 2025-09-01 Epub Date: 2025-02-07 DOI:10.4103/mgr.MEDGASRES-D-24-00121
Handriela Hoff de Oliveira Sobrinho, Renato Eising, Ernesto Osvaldo Wrasse
{"title":"Nanomaterials as medicinal gas sensors described by density functional theory: a comprehensive review.","authors":"Handriela Hoff de Oliveira Sobrinho, Renato Eising, Ernesto Osvaldo Wrasse","doi":"10.4103/mgr.MEDGASRES-D-24-00121","DOIUrl":null,"url":null,"abstract":"<p><p>Using medical gas detectors offers a promising and non-invasive approach for the early identification of diseases. This technique provides a less painful and more accessible alternative to traditional diagnostic methods. In the development of these new detection methods, the use of nanomaterials as gas sensors has proven advantageous due to their large surface areas, which enhance reactivity and sensitivity in identifying volatile compounds. To evaluate the behavior of nanomaterials when in contact with medical gases, ab initio computational simulations based on density functional theory have shown to be effective. This literature review presents studies that have applied density functional theory to investigate intermolecular interactions between specific nanosystems and gases, such as toluene, hydrogen sulfide, ammonia, and nitric oxide. These studies have yielded promising results related to adsorption and dissociation energies, electronic properties, energy gaps, bond lengths, and charge transfer, suggesting the potential of nanomaterials as effective sensors for medical gas detection.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":" ","pages":"435-441"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054671/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Using medical gas detectors offers a promising and non-invasive approach for the early identification of diseases. This technique provides a less painful and more accessible alternative to traditional diagnostic methods. In the development of these new detection methods, the use of nanomaterials as gas sensors has proven advantageous due to their large surface areas, which enhance reactivity and sensitivity in identifying volatile compounds. To evaluate the behavior of nanomaterials when in contact with medical gases, ab initio computational simulations based on density functional theory have shown to be effective. This literature review presents studies that have applied density functional theory to investigate intermolecular interactions between specific nanosystems and gases, such as toluene, hydrogen sulfide, ammonia, and nitric oxide. These studies have yielded promising results related to adsorption and dissociation energies, electronic properties, energy gaps, bond lengths, and charge transfer, suggesting the potential of nanomaterials as effective sensors for medical gas detection.

密度泛函理论描述的医用气体传感器纳米材料综述。
使用医用气体探测器为疾病的早期识别提供了一种有前途的非侵入性方法。与传统的诊断方法相比,这项技术提供了一种痛苦更少、更容易获得的替代方法。在这些新的检测方法的发展中,使用纳米材料作为气体传感器已被证明是有利的,因为它们的表面积大,这提高了识别挥发性化合物的反应性和灵敏度。为了评估纳米材料与医用气体接触时的行为,基于密度泛函理论的从头计算模拟已被证明是有效的。本文献综述介绍了应用密度泛函理论研究特定纳米系统与气体(如甲苯、硫化氢、氨和一氧化氮)之间分子间相互作用的研究。这些研究在吸附和解离能、电子性质、能隙、键长和电荷转移等方面取得了令人满意的结果,表明纳米材料有潜力成为医用气体检测的有效传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical Gas Research
Medical Gas Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
5.10
自引率
13.80%
发文量
35
期刊介绍: Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信