Flow-based simulation in transverse sinus stenosis pre- and post-stenting: pressure prediction accuracy, hemodynamic complexity, and relationship to pulsatile tinnitus.

IF 4.5 1区 医学 Q1 NEUROIMAGING
Janneck Stahl, Tatiana Abou-Mrad, Laura Stone McGuire, Gábor Janiga, Sylvia Saalfeld, Ali Alaraj, Philipp Berg
{"title":"Flow-based simulation in transverse sinus stenosis pre- and post-stenting: pressure prediction accuracy, hemodynamic complexity, and relationship to pulsatile tinnitus.","authors":"Janneck Stahl, Tatiana Abou-Mrad, Laura Stone McGuire, Gábor Janiga, Sylvia Saalfeld, Ali Alaraj, Philipp Berg","doi":"10.1136/jnis-2024-022867","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The proximity of transverse sinus stenosis (TSS) to inner ear structures and the temporal bone makes it a substantial cause of pulsatile tinnitus (PT). Treatment typically involves venous sinus stenting. This study investigates the hemodynamic stressors in TSS patients with PT along the pulse-transmitting temporal bone area and evaluates its treatment effects.</p><p><strong>Methods: </strong>Four patients with idiopathic intracranial hypertension, PT, and TSS, and four control patients were imaged using MR venography (MRV) and flat panel CT (FP-CT). Patient-specific blood flow simulations were conducted using boundary conditions based on quantitative MR angiography before and after VSS. Catheter-based trans-stenotic pressure gradient measurements were used to validate the simulation results.</p><p><strong>Results: </strong>The prediction of pressure gradients was close to catheter-based measurements using FP-CT-based segmentations (absolute deviation of 0.35 mm Hg) and is superior to MRV-based reconstructions (absolute deviation of 6.9 mm Hg). In TSS patients, the sinus temporal bone contact areas revealed notably higher time-averaged wall shear stress by 47±22% and velocity values by 41±18% compared with the sinus brain side. The relative residence time decreased by 57±58%. After stenting, the hemodynamic parameters dropped at the temporal side and throughout the sigmoid sinus. Almost all control patient hemodynamics remained lower than post-interventional results.</p><p><strong>Conclusion: </strong>Our simulations based on patient-specific flows highly predicts pressure gradients across the stenosis. Flow conditions in TSS reveal flow jet formation and high shear rates at the temporal bone, potentially causing sound transmission. The treatment reduces these stressors, demonstrating its targeted therapeutic effect.</p>","PeriodicalId":16411,"journal":{"name":"Journal of NeuroInterventional Surgery","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroInterventional Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jnis-2024-022867","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The proximity of transverse sinus stenosis (TSS) to inner ear structures and the temporal bone makes it a substantial cause of pulsatile tinnitus (PT). Treatment typically involves venous sinus stenting. This study investigates the hemodynamic stressors in TSS patients with PT along the pulse-transmitting temporal bone area and evaluates its treatment effects.

Methods: Four patients with idiopathic intracranial hypertension, PT, and TSS, and four control patients were imaged using MR venography (MRV) and flat panel CT (FP-CT). Patient-specific blood flow simulations were conducted using boundary conditions based on quantitative MR angiography before and after VSS. Catheter-based trans-stenotic pressure gradient measurements were used to validate the simulation results.

Results: The prediction of pressure gradients was close to catheter-based measurements using FP-CT-based segmentations (absolute deviation of 0.35 mm Hg) and is superior to MRV-based reconstructions (absolute deviation of 6.9 mm Hg). In TSS patients, the sinus temporal bone contact areas revealed notably higher time-averaged wall shear stress by 47±22% and velocity values by 41±18% compared with the sinus brain side. The relative residence time decreased by 57±58%. After stenting, the hemodynamic parameters dropped at the temporal side and throughout the sigmoid sinus. Almost all control patient hemodynamics remained lower than post-interventional results.

Conclusion: Our simulations based on patient-specific flows highly predicts pressure gradients across the stenosis. Flow conditions in TSS reveal flow jet formation and high shear rates at the temporal bone, potentially causing sound transmission. The treatment reduces these stressors, demonstrating its targeted therapeutic effect.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.50
自引率
14.60%
发文量
291
审稿时长
4-8 weeks
期刊介绍: The Journal of NeuroInterventional Surgery (JNIS) is a leading peer review journal for scientific research and literature pertaining to the field of neurointerventional surgery. The journal launch follows growing professional interest in neurointerventional techniques for the treatment of a range of neurological and vascular problems including stroke, aneurysms, brain tumors, and spinal compression.The journal is owned by SNIS and is also the official journal of the Interventional Chapter of the Australian and New Zealand Society of Neuroradiology (ANZSNR), the Canadian Interventional Neuro Group, the Hong Kong Neurological Society (HKNS) and the Neuroradiological Society of Taiwan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信