Histone acetyltransferase Sas3 in Phomopsis liquidambaris promotes spermidine biosynthesis against Fusarium graminearum in wheat.

IF 4.4 1区 农林科学 Q1 AGRONOMY
Xinru Cui, Zhi Yang, Longshen Wang, Yuxin Dong, Sitong Ke, Zhichun Zhan, Chuanchao Dai, Yanzhen Mei
{"title":"Histone acetyltransferase Sas3 in Phomopsis liquidambaris promotes spermidine biosynthesis against Fusarium graminearum in wheat.","authors":"Xinru Cui, Zhi Yang, Longshen Wang, Yuxin Dong, Sitong Ke, Zhichun Zhan, Chuanchao Dai, Yanzhen Mei","doi":"10.1007/s00122-025-04833-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Spermidine production in the endophytic fungus Phomopsis liquidambaris is regulated by Sas3, and spermidine promotes resistance to Fusarium graminearum by increasing the expression of immune-related indicators in wheat. Fusarium head blight (FHB) is a common wheat disease caused mainly by Fusarium graminearum. The present study showed that overexpression of the histone acetyltransferase Sas3 in Phomopsis liquidambaris regulated the synthesis of spermidine and promoted resistance to F. graminearum in wheat. Sas3 localized in the nucleus plays a key role in acetylating lysines 9 and 14 of histone H3 (H3K9 and H3K14) and clearly promotes the development and growth of P. liquidambaris in the overexpression strain OE-Sas3 and knockout strain Ko-Sas3. The OE-Sas3 strain promoted the growth of wheat seedlings and increased the level of reactive oxygen species (ROS) pumps, which increased the activities of the catalase (CAT) and peroxidase (POD) and the expression levels of genes involved in the jasmonic acid, ethylene, and salicylic acid pathways. Furthermore, OE-Sas3 increased the level of resistance of wheat to F. graminearum through the positive regulation of spermidine biosynthesis, which reduced the incidence of wheat spike disease from 76 to 54% and that of grain disease from 52.35 to 32.68%. This study provides a new perspective for the application of P. liquidambaris as a biocontrol agent via rational design and improved FHB resistance.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 2","pages":"48"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-04833-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: Spermidine production in the endophytic fungus Phomopsis liquidambaris is regulated by Sas3, and spermidine promotes resistance to Fusarium graminearum by increasing the expression of immune-related indicators in wheat. Fusarium head blight (FHB) is a common wheat disease caused mainly by Fusarium graminearum. The present study showed that overexpression of the histone acetyltransferase Sas3 in Phomopsis liquidambaris regulated the synthesis of spermidine and promoted resistance to F. graminearum in wheat. Sas3 localized in the nucleus plays a key role in acetylating lysines 9 and 14 of histone H3 (H3K9 and H3K14) and clearly promotes the development and growth of P. liquidambaris in the overexpression strain OE-Sas3 and knockout strain Ko-Sas3. The OE-Sas3 strain promoted the growth of wheat seedlings and increased the level of reactive oxygen species (ROS) pumps, which increased the activities of the catalase (CAT) and peroxidase (POD) and the expression levels of genes involved in the jasmonic acid, ethylene, and salicylic acid pathways. Furthermore, OE-Sas3 increased the level of resistance of wheat to F. graminearum through the positive regulation of spermidine biosynthesis, which reduced the incidence of wheat spike disease from 76 to 54% and that of grain disease from 52.35 to 32.68%. This study provides a new perspective for the application of P. liquidambaris as a biocontrol agent via rational design and improved FHB resistance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信