Facile microwave-assisted green synthesis and characterization of flower shaped zinc oxide nanoclusters using Centella asiatica (Linn.) leaf extract and evaluation of its antimicrobial activity and in vivo toxic effects on Artemia nauplii.

IF 2 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Vipina Vinod T N, Amy S Mathew, Divya Mathew, Jyothis Mathew, Radhakrishnan E K
{"title":"Facile microwave-assisted green synthesis and characterization of flower shaped zinc oxide nanoclusters using <i>Centella asiatica</i> (Linn.) leaf extract and evaluation of its antimicrobial activity and <i>in vivo</i> toxic effects on <i>Artemia nauplii</i>.","authors":"Vipina Vinod T N, Amy S Mathew, Divya Mathew, Jyothis Mathew, Radhakrishnan E K","doi":"10.1080/10826068.2025.2460498","DOIUrl":null,"url":null,"abstract":"<p><p>Green synthesized nanomaterials play a vital role in nanotechnology was due to its diverse applications. In the current study, flower shaped nanoclusters of zinc oxide nanoparticles (ZnONPs) was fabricated using the leaf extract of <i>Centella asiatica</i> (Linn.) by microwave-assisted method. The physico-chemical characterization of the green synthesized ZnONPs were further conducted by the UV-Vis spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and transmission electron microscopy analysis. The UV-Vis spectrum of the synthesized ZnONPs has showed characteristic absorption maximum at 363 nm. The XRD pattern of the same could confirm to have the crystalline nature of ZnONPs. Additionally, the FT-IR spectra have revealed the presence of characteristic stretching and bending vibrations of the Zn-O bond, along with those of phytochemicals that might have involved in ZnONPs stabilization. By the HR-TEM imaging, agglomeration of the nanoparticles and thereby the formation of flower-like clusters could be observed. Furthermore, the synthesized ZnONPs have remarkable antimicrobial activity against <i>S. aureus</i> and <i>E. coli</i> with inhibition zones of 15 ± 0.4 and 16.5 ± 1.0 mm respectively. The green synthesized ZnONPs showed no significant toxicity toward <i>Artemia nauplii</i>. Hence, the results of the study indicate the promising potential of the synthesized ZnO nanoclusters.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-14"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2025.2460498","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Green synthesized nanomaterials play a vital role in nanotechnology was due to its diverse applications. In the current study, flower shaped nanoclusters of zinc oxide nanoparticles (ZnONPs) was fabricated using the leaf extract of Centella asiatica (Linn.) by microwave-assisted method. The physico-chemical characterization of the green synthesized ZnONPs were further conducted by the UV-Vis spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and transmission electron microscopy analysis. The UV-Vis spectrum of the synthesized ZnONPs has showed characteristic absorption maximum at 363 nm. The XRD pattern of the same could confirm to have the crystalline nature of ZnONPs. Additionally, the FT-IR spectra have revealed the presence of characteristic stretching and bending vibrations of the Zn-O bond, along with those of phytochemicals that might have involved in ZnONPs stabilization. By the HR-TEM imaging, agglomeration of the nanoparticles and thereby the formation of flower-like clusters could be observed. Furthermore, the synthesized ZnONPs have remarkable antimicrobial activity against S. aureus and E. coli with inhibition zones of 15 ± 0.4 and 16.5 ± 1.0 mm respectively. The green synthesized ZnONPs showed no significant toxicity toward Artemia nauplii. Hence, the results of the study indicate the promising potential of the synthesized ZnO nanoclusters.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Preparative Biochemistry & Biotechnology
Preparative Biochemistry & Biotechnology 工程技术-生化研究方法
CiteScore
4.90
自引率
3.40%
发文量
98
审稿时长
2 months
期刊介绍: Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信