The variation of summer heat resistance was associated with leaf transpiration rate in relatively large-leaf Rhododendron plants in southwest China.

IF 2.7 3区 生物学 Q2 PLANT SCIENCES
Hai-Xia Zhang, Huie Li
{"title":"The variation of summer heat resistance was associated with leaf transpiration rate in relatively large-leaf Rhododendron plants in southwest China.","authors":"Hai-Xia Zhang, Huie Li","doi":"10.1007/s10265-025-01620-0","DOIUrl":null,"url":null,"abstract":"<p><p>The summer heat is a vital factor limiting the introduction of relatively large-leaf Rhododendron plants to low-altitude areas, making it crucial to evaluate the resistance of different germplasm to summer heat. A pot experiment was conducted in 2023 to investigate the temporal changes in the photosynthetic characteristics, physiological and biochemical characteristics, and chlorophyll fluorescence characteristics of 14 representative relatively large-leaf Rhododendron germplasm. The results showed the R. irroratum and 'Hotspur Red' exhibited the highest heat damage index (HDI), while R. jiulongshanense and 'Moser Maroon' had the lowest HDI among the 14 Rhododendron germplasm. The photosynthesis rate and F<sub>v</sub>/F<sub>m</sub> (maximum photochemical efficiency) initially decreased and then recovered in all germplasm except R. irroratum. In contrast, the leaf transpiration rate, stomatal conductance, and chlorophyll content gradually increased. Hydrogen peroxide concentration first decreased and then increased, while malondialdehyde concentration initially increased and then decreased. Additionally, the superoxide anion content gradually increased. The activities of superoxide dismutase, peroxidase, and catalase (CAT) initially increased and then decreased. The HDI was positively correlated with CAT activity (r = 0.28, P < 0.05) but negatively correlated with photosynthesis rate (r = -0.26, P < 0.05), leaf transpiration rate (r = -0.27, P < 0.05), and F<sub>v</sub>/F<sub>m</sub> (r = -0.43, P < 0.001). Variation in summer heat resistance, as indicated by HDI, was observed among the 14 Rhododendron germplasm. This heat resistance was mainly associated with leaf transpiration rate and F<sub>v</sub>/F<sub>m</sub>. The indirect role of antioxidant enzymes in maintaining reactive oxygen species homeostasis in summer heat resistance was observed. The results provide a reference for introducing and cultivating relatively large-leaf Rhododendron plants to low-altitude areas.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-025-01620-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The summer heat is a vital factor limiting the introduction of relatively large-leaf Rhododendron plants to low-altitude areas, making it crucial to evaluate the resistance of different germplasm to summer heat. A pot experiment was conducted in 2023 to investigate the temporal changes in the photosynthetic characteristics, physiological and biochemical characteristics, and chlorophyll fluorescence characteristics of 14 representative relatively large-leaf Rhododendron germplasm. The results showed the R. irroratum and 'Hotspur Red' exhibited the highest heat damage index (HDI), while R. jiulongshanense and 'Moser Maroon' had the lowest HDI among the 14 Rhododendron germplasm. The photosynthesis rate and Fv/Fm (maximum photochemical efficiency) initially decreased and then recovered in all germplasm except R. irroratum. In contrast, the leaf transpiration rate, stomatal conductance, and chlorophyll content gradually increased. Hydrogen peroxide concentration first decreased and then increased, while malondialdehyde concentration initially increased and then decreased. Additionally, the superoxide anion content gradually increased. The activities of superoxide dismutase, peroxidase, and catalase (CAT) initially increased and then decreased. The HDI was positively correlated with CAT activity (r = 0.28, P < 0.05) but negatively correlated with photosynthesis rate (r = -0.26, P < 0.05), leaf transpiration rate (r = -0.27, P < 0.05), and Fv/Fm (r = -0.43, P < 0.001). Variation in summer heat resistance, as indicated by HDI, was observed among the 14 Rhododendron germplasm. This heat resistance was mainly associated with leaf transpiration rate and Fv/Fm. The indirect role of antioxidant enzymes in maintaining reactive oxygen species homeostasis in summer heat resistance was observed. The results provide a reference for introducing and cultivating relatively large-leaf Rhododendron plants to low-altitude areas.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信