Jinbao Chen, Chenqi Wu, Kun Yu, Jinpei Liu, Jiahua Yang, Wei Li, Xiaoxia Tang, Yihai Shi, Ke Xu, Yi Chen, Xiaoyu Qin
{"title":"Bufalin targets the SRC-3/c-Myc pathway in chemoresistant cells to regulate metastasis induced by chemoresistance in colorectal cancer.","authors":"Jinbao Chen, Chenqi Wu, Kun Yu, Jinpei Liu, Jiahua Yang, Wei Li, Xiaoxia Tang, Yihai Shi, Ke Xu, Yi Chen, Xiaoyu Qin","doi":"10.1007/s00432-025-06124-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metastasis and chemoresistance are often major challenges in advanced-stage colorectal cancer. Bufalin has a therapeutic effect on both metastasis and drug resistance, but how bufalin affects chemoresistance-mediated metastasis remains unclear.</p><p><strong>Methods: </strong>The role of BU in the inhibition of EMT and angiogenesis induced by chemoresistant cells using wound healing assays, invasion assays, HUVEC tube formation and adhesion assays. Western blot and immunofluorescence were used to explore the potential molecular changes. BU can precisely regulate c-Myc expression by targeting SRC-3 in chemoresistant cells was confirmed by Western blot. In vivo experiments were conducted to validate that both BU and cinobufacini can ameliorate drug resistance-promoted EMT and angiogenic effects.</p><p><strong>Results: </strong>Bufalin inhibited resistance-induced epithelial-mesenchymal transition (EMT) and angiogenesis. Targeting of the SRC-3 protein by bufalin reduced the expression level of c-Myc and inhibited the prometastatic effect mediated by chemoresistance, and overexpression of SRC-3 or c-Myc reversed the inhibitory effect of bufalin on chemotherapeutic resistance, promoting metastasis. Moreover, the clinical drug cinobufacini and its main active monomer bufalin reduced liver metastasis of colorectal cancer caused by chemoresistance in vivo.</p><p><strong>Conclusion: </strong>Bufalin can target the SRC-3/c-Myc signaling pathway to affect the prometastatic effect of chemoresistant cells, suggesting that bufalin may be used as a new adjuvant antimetastatic therapy for colorectal cancer.</p>","PeriodicalId":15118,"journal":{"name":"Journal of Cancer Research and Clinical Oncology","volume":"151 2","pages":"71"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Research and Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00432-025-06124-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Metastasis and chemoresistance are often major challenges in advanced-stage colorectal cancer. Bufalin has a therapeutic effect on both metastasis and drug resistance, but how bufalin affects chemoresistance-mediated metastasis remains unclear.
Methods: The role of BU in the inhibition of EMT and angiogenesis induced by chemoresistant cells using wound healing assays, invasion assays, HUVEC tube formation and adhesion assays. Western blot and immunofluorescence were used to explore the potential molecular changes. BU can precisely regulate c-Myc expression by targeting SRC-3 in chemoresistant cells was confirmed by Western blot. In vivo experiments were conducted to validate that both BU and cinobufacini can ameliorate drug resistance-promoted EMT and angiogenic effects.
Results: Bufalin inhibited resistance-induced epithelial-mesenchymal transition (EMT) and angiogenesis. Targeting of the SRC-3 protein by bufalin reduced the expression level of c-Myc and inhibited the prometastatic effect mediated by chemoresistance, and overexpression of SRC-3 or c-Myc reversed the inhibitory effect of bufalin on chemotherapeutic resistance, promoting metastasis. Moreover, the clinical drug cinobufacini and its main active monomer bufalin reduced liver metastasis of colorectal cancer caused by chemoresistance in vivo.
Conclusion: Bufalin can target the SRC-3/c-Myc signaling pathway to affect the prometastatic effect of chemoresistant cells, suggesting that bufalin may be used as a new adjuvant antimetastatic therapy for colorectal cancer.
期刊介绍:
The "Journal of Cancer Research and Clinical Oncology" publishes significant and up-to-date articles within the fields of experimental and clinical oncology. The journal, which is chiefly devoted to Original papers, also includes Reviews as well as Editorials and Guest editorials on current, controversial topics. The section Letters to the editors provides a forum for a rapid exchange of comments and information concerning previously published papers and topics of current interest. Meeting reports provide current information on the latest results presented at important congresses.
The following fields are covered: carcinogenesis - etiology, mechanisms; molecular biology; recent developments in tumor therapy; general diagnosis; laboratory diagnosis; diagnostic and experimental pathology; oncologic surgery; and epidemiology.