Densely vascularized thick 3D tissue shows enhanced protein secretion constructed with intermittent positive pressure.

IF 5.2 1区 生物学 Q1 BIOLOGY
Misako Katsuura, Jun Homma, Yuhei Higashi, Hidekazu Sekine, Tatsuya Shimizu
{"title":"Densely vascularized thick 3D tissue shows enhanced protein secretion constructed with intermittent positive pressure.","authors":"Misako Katsuura, Jun Homma, Yuhei Higashi, Hidekazu Sekine, Tatsuya Shimizu","doi":"10.1038/s42003-025-07627-6","DOIUrl":null,"url":null,"abstract":"<p><p>Constructing a dense vascular endothelial network within engineered tissue is crucial for successful engraftment. The present study investigated the effects of air-compressing intermittent positive pressure (IPP) on co-cultured mesenchymal stem cells and vascular endothelial cells and evaluated the potential of IPP-cultured cell sheets for transplantation therapy. The results demonstrated that the IPP (+) group exhibited a denser vascular endothelial network and significantly increased cell sheet thickness compared to the IPP (-) group. Furthermore, in vivo experiments showed that IPP-cultured cell sheets enhanced the secretion of Gaussian luciferase by genetically modified mesenchymal stem cells. These findings highlight the IPP method as a technique that simultaneously enables the thickening of planar tissues and the construction of vascular networks. This approach demonstrates promise for fabricating functional, transplantable, and thick tissues with dense vascularization and a high capacity for protein secretion, paving the way for novel applications in regenerative medicine.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"201"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07627-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing a dense vascular endothelial network within engineered tissue is crucial for successful engraftment. The present study investigated the effects of air-compressing intermittent positive pressure (IPP) on co-cultured mesenchymal stem cells and vascular endothelial cells and evaluated the potential of IPP-cultured cell sheets for transplantation therapy. The results demonstrated that the IPP (+) group exhibited a denser vascular endothelial network and significantly increased cell sheet thickness compared to the IPP (-) group. Furthermore, in vivo experiments showed that IPP-cultured cell sheets enhanced the secretion of Gaussian luciferase by genetically modified mesenchymal stem cells. These findings highlight the IPP method as a technique that simultaneously enables the thickening of planar tissues and the construction of vascular networks. This approach demonstrates promise for fabricating functional, transplantable, and thick tissues with dense vascularization and a high capacity for protein secretion, paving the way for novel applications in regenerative medicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信