Baicalein Modulates Endoplasmic Reticulum Stress by Activating SIRT3 to Attenuate the Dysfunction of Retinal Microvascular Endothelial Cells under High Glucose Conditions.
{"title":"Baicalein Modulates Endoplasmic Reticulum Stress by Activating SIRT3 to Attenuate the Dysfunction of Retinal Microvascular Endothelial Cells under High Glucose Conditions.","authors":"Si-Min Wang, Yang Xia","doi":"10.1016/j.exer.2025.110250","DOIUrl":null,"url":null,"abstract":"<p><p>High glucose-induced alterations in the retinal microvasculature are major contributors to vision loss and deterioration. Baicalein, known for its protective effect on blood vessels and endothelial cells, is a potential therapeutic agent for diabetes-induced retinal dysfunction. This study aims to investigate the impact and mechanism of baicalein on high glucose-induced dysfunction in retinal microvascular endothelial cells (RMECs). Human RMECs (hRMECs) were exposed to a high glucose condition (30 mM). The effect of various concentrations of baicalein on cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Baicalein's effects on sirtuin 3 (SIRT3) expression in hRMECs were evaluated via western blot and quantitative real-time polymerase chain reaction. Additionally, the regulatory role of baicalein was examined by knocking down SIRT3. Cell permeability and migration were assessed using the Transwell assay, and tube formation was evaluated by tube formation assay. Moreover, western blot analysis was employed to investigate protein expression related to endoplasmic reticulum stress (ERS). Baicalein markedly inhibited the increase in the viability, permeability, tube formation and migration of hRMECs induced by high glucose. Moreover, it significantly reduced the intracellular ERS levels in high glucose-induced hRMECs. Notably, SIRT3 knockdown reversed the inhibition of baicalein on hRMECs. In summary, baicalein mitigates high glucose-mediated ERS by up-regulating SIRT3 expression, thereby maintaining the normal function of RMECs.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":" ","pages":"110250"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2025.110250","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High glucose-induced alterations in the retinal microvasculature are major contributors to vision loss and deterioration. Baicalein, known for its protective effect on blood vessels and endothelial cells, is a potential therapeutic agent for diabetes-induced retinal dysfunction. This study aims to investigate the impact and mechanism of baicalein on high glucose-induced dysfunction in retinal microvascular endothelial cells (RMECs). Human RMECs (hRMECs) were exposed to a high glucose condition (30 mM). The effect of various concentrations of baicalein on cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Baicalein's effects on sirtuin 3 (SIRT3) expression in hRMECs were evaluated via western blot and quantitative real-time polymerase chain reaction. Additionally, the regulatory role of baicalein was examined by knocking down SIRT3. Cell permeability and migration were assessed using the Transwell assay, and tube formation was evaluated by tube formation assay. Moreover, western blot analysis was employed to investigate protein expression related to endoplasmic reticulum stress (ERS). Baicalein markedly inhibited the increase in the viability, permeability, tube formation and migration of hRMECs induced by high glucose. Moreover, it significantly reduced the intracellular ERS levels in high glucose-induced hRMECs. Notably, SIRT3 knockdown reversed the inhibition of baicalein on hRMECs. In summary, baicalein mitigates high glucose-mediated ERS by up-regulating SIRT3 expression, thereby maintaining the normal function of RMECs.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.