The characterization of a novel IRF8-like homolog and its role in the immune modulation of the sea urchin Strongylocentrotus intermedius

IF 4.1 2区 农林科学 Q1 FISHERIES
Baoyu Huang , Yifan Qu , Haikun Zhang , Jilv Ma , Jiwen Chen , Cui Jie , Fengchen Liu , Zhongyi Chu , Yaqiong Liu , Yijing Han , Xiaotong Wang , Wenhao Wang
{"title":"The characterization of a novel IRF8-like homolog and its role in the immune modulation of the sea urchin Strongylocentrotus intermedius","authors":"Baoyu Huang ,&nbsp;Yifan Qu ,&nbsp;Haikun Zhang ,&nbsp;Jilv Ma ,&nbsp;Jiwen Chen ,&nbsp;Cui Jie ,&nbsp;Fengchen Liu ,&nbsp;Zhongyi Chu ,&nbsp;Yaqiong Liu ,&nbsp;Yijing Han ,&nbsp;Xiaotong Wang ,&nbsp;Wenhao Wang","doi":"10.1016/j.fsi.2025.110179","DOIUrl":null,"url":null,"abstract":"<div><div>Interferon regulatory factor (IRF) proteins, functioning as transcription factors, are essential for various animal species' innate immune defense and stress responses. However, further research is required to elucidate the roles of IRF in echinoderms. In this study, a new IRF gene (<em>SiIRF8-like</em>) was obtained from the sea urchin (<em>Strongylocentrotus intermedius</em>). The open reading frame for <em>SiIRF8-like</em> spanned 2004 bp and encoded a protein composed of 667 amino acids. Domain prediction analysis revealed a typical IRF domain at the N-terminus and an IRF3 domain at the C terminus of the SiIRF8-like protein, exhibiting similar amino acid sequences across different species. Phylogenetic analyses indicated that SiIRF8-like proteins were closely related to mollusk IRF8 proteins. Quantitative real-time PCR revealed detectable levels of <em>SiIRF8-like</em> mRNA in all sea urchin tissues examined, with the highest expression observed in coelomocytes. Furthermore, lipopolysaccharide and polyinosinic–polycytidylic acid treatments significantly increased transcript expression levels of <em>SiIRF8-like</em>. Subcellular localization experiments revealed that SiIRF8-like is mainly localized in the nucleus. Additionally, dual-luciferase reporter assays indicated that overexpression of SiIRF8-like in HEK293T cells could specifically activate reporter genes such as interleukin 6, interferon α/β/γ, activating protein 1, and interferon-stimulated response element. Finally, the overexpressed SiIRF8-like could promote the phosphorylation of protein kinases (JNK and Erk1/2). These preliminary findings regarding the immune functions linked to the SiIRF8-like protein offer valuable insights into the innate immunity mechanisms of invertebrate IRFs and provide theoretical support for developing disease-resistant strains of sea urchins.</div></div>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":"159 ","pages":"Article 110179"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050464825000683","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Interferon regulatory factor (IRF) proteins, functioning as transcription factors, are essential for various animal species' innate immune defense and stress responses. However, further research is required to elucidate the roles of IRF in echinoderms. In this study, a new IRF gene (SiIRF8-like) was obtained from the sea urchin (Strongylocentrotus intermedius). The open reading frame for SiIRF8-like spanned 2004 bp and encoded a protein composed of 667 amino acids. Domain prediction analysis revealed a typical IRF domain at the N-terminus and an IRF3 domain at the C terminus of the SiIRF8-like protein, exhibiting similar amino acid sequences across different species. Phylogenetic analyses indicated that SiIRF8-like proteins were closely related to mollusk IRF8 proteins. Quantitative real-time PCR revealed detectable levels of SiIRF8-like mRNA in all sea urchin tissues examined, with the highest expression observed in coelomocytes. Furthermore, lipopolysaccharide and polyinosinic–polycytidylic acid treatments significantly increased transcript expression levels of SiIRF8-like. Subcellular localization experiments revealed that SiIRF8-like is mainly localized in the nucleus. Additionally, dual-luciferase reporter assays indicated that overexpression of SiIRF8-like in HEK293T cells could specifically activate reporter genes such as interleukin 6, interferon α/β/γ, activating protein 1, and interferon-stimulated response element. Finally, the overexpressed SiIRF8-like could promote the phosphorylation of protein kinases (JNK and Erk1/2). These preliminary findings regarding the immune functions linked to the SiIRF8-like protein offer valuable insights into the innate immunity mechanisms of invertebrate IRFs and provide theoretical support for developing disease-resistant strains of sea urchins.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fish & shellfish immunology
Fish & shellfish immunology 农林科学-海洋与淡水生物学
CiteScore
7.50
自引率
19.10%
发文量
750
审稿时长
68 days
期刊介绍: Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信