{"title":"Quaking RNA-Binding protein (QKI) mediates circular RNA biogenesis in Litopenaeus vannamei during WSSV infection","authors":"Tannatorn Phiwthong, Sirawich Limkul, Phirom Aunkam, Tuangrak Seabkongseng, Neung Teaumroong, Panlada Tittabutr, Pakpoom Bunchuen","doi":"10.1016/j.fsi.2025.110178","DOIUrl":null,"url":null,"abstract":"<div><div>The Quaking RNA-binding protein (QKI), a member of the STAR family, is considered critical in the formation of circular RNAs (circRNAs), as it aids in catalyzing a back-splicing phenomenon by interacting with RNA precursors. CircRNAs have progressively been revealed to play central roles in the regulation of various biological processes, such as antiviral defense mechanisms. This study identifies a QKI in <em>L. vannamei</em>, referred to as LvQKI, comprised of conserved STAR and KH RNA-binding domains. Analysis through tissue-specific expression using qRT-PCR has revealed a high expression level of LvQKI in the gill – one of the primary regions heavily populated by the white spot syndrome virus (WSSV) – and its activation was triggered during WSSV infection. From an RNA interference-mediated suppression targeting LvQKI, a decrease and increase in survival rates and WSSV copy number were observed, respectively. Notably, circRNA levels were significantly lowered in LvQKI-silenced shrimp, whereas linear RNAs remained stable. Conversely, administration of recombinant LvQKI (rLvQKI) protein before a WSSV challenge not only enhanced survival rates but also reduced viral load, wherein both circRNAs and linear RNAs underwent up-regulation in rLvQKI-treated shrimp. Our results introduce LvQKI as a crucial factor in circRNA biogenesis and immune defense in shrimp, emphasizing the interplay between LvQKI's and circRNAs' roles in fighting viral invasion.</div></div>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":"159 ","pages":"Article 110178"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050464825000671","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
The Quaking RNA-binding protein (QKI), a member of the STAR family, is considered critical in the formation of circular RNAs (circRNAs), as it aids in catalyzing a back-splicing phenomenon by interacting with RNA precursors. CircRNAs have progressively been revealed to play central roles in the regulation of various biological processes, such as antiviral defense mechanisms. This study identifies a QKI in L. vannamei, referred to as LvQKI, comprised of conserved STAR and KH RNA-binding domains. Analysis through tissue-specific expression using qRT-PCR has revealed a high expression level of LvQKI in the gill – one of the primary regions heavily populated by the white spot syndrome virus (WSSV) – and its activation was triggered during WSSV infection. From an RNA interference-mediated suppression targeting LvQKI, a decrease and increase in survival rates and WSSV copy number were observed, respectively. Notably, circRNA levels were significantly lowered in LvQKI-silenced shrimp, whereas linear RNAs remained stable. Conversely, administration of recombinant LvQKI (rLvQKI) protein before a WSSV challenge not only enhanced survival rates but also reduced viral load, wherein both circRNAs and linear RNAs underwent up-regulation in rLvQKI-treated shrimp. Our results introduce LvQKI as a crucial factor in circRNA biogenesis and immune defense in shrimp, emphasizing the interplay between LvQKI's and circRNAs' roles in fighting viral invasion.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.