Right Ventricular Electrophysiology and Arrhythmias in Adults With Congenital Heart Disease: Scientific Basis for Management.

IF 5.8 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Stephanie Fuentes Rojas, Stanley Nattel, Roddy Hiram, Paul Khairy
{"title":"Right Ventricular Electrophysiology and Arrhythmias in Adults With Congenital Heart Disease: Scientific Basis for Management.","authors":"Stephanie Fuentes Rojas, Stanley Nattel, Roddy Hiram, Paul Khairy","doi":"10.1016/j.cjca.2025.01.033","DOIUrl":null,"url":null,"abstract":"<p><p>Right ventricular (RV) dysfunction and arrhythmias are major concerns in adults with congenital heart disease (CHD). The relationship between RV dysfunction and arrhythmogenesis is bidirectional, with structural and electrical remodeling contributing to arrhythmia development and, conversely, arrhythmias exacerbating RV failure. In addition to an RV in the standard subpulmonary position failing because of pressure and/or volume overload, other phenotypes associated with RV dysfunction in CHD include transposition of the great arteries with a systemic (subaortic) RV and univentricular hearts with a predominant RV morphology. The RV is better suited for low-pressure workloads. When it supports the systemic circulation, the RV undergoes remodeling changes that promote arrhythmias, which can provoke a cycle of worsening dysfunction and arrhythmogenesis. Arrhythmias can worsen RV dysfunction by impairing hemodynamic stability, reducing cardiac output, provoking dyssynchrony, and inducing tachycardia-induced cardiomyopathy. Cellular mechanisms, including myocardial fibrosis, dysregulation of ion channels, and abnormal gap junction function, are central to this process, facilitating both re-entrant and triggered arrhythmias. Conduction disturbances, whether inherent or caused by fibrosis or pacing, compound these effects, aggravating both RV dysfunction and arrhythmia perpetuation. Management strategies must be comprehensive and include pre-emptive approaches to minimize arrhythmias, alongside early detection. Individualized therapies may include catheter ablation and cardiac implantable electronic devices, with treatment tailored to the specific RV phenotype and arrhythmia type. In this review we emphasize the importance of personalized interventions to prevent the vicious cycle of RV dysfunction and arrhythmias in CHD. Further research is essential to optimize therapeutic strategies and address care-limiting knowledge gaps.</p>","PeriodicalId":9555,"journal":{"name":"Canadian Journal of Cardiology","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cjca.2025.01.033","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Right ventricular (RV) dysfunction and arrhythmias are major concerns in adults with congenital heart disease (CHD). The relationship between RV dysfunction and arrhythmogenesis is bidirectional, with structural and electrical remodeling contributing to arrhythmia development and, conversely, arrhythmias exacerbating RV failure. In addition to an RV in the standard subpulmonary position failing because of pressure and/or volume overload, other phenotypes associated with RV dysfunction in CHD include transposition of the great arteries with a systemic (subaortic) RV and univentricular hearts with a predominant RV morphology. The RV is better suited for low-pressure workloads. When it supports the systemic circulation, the RV undergoes remodeling changes that promote arrhythmias, which can provoke a cycle of worsening dysfunction and arrhythmogenesis. Arrhythmias can worsen RV dysfunction by impairing hemodynamic stability, reducing cardiac output, provoking dyssynchrony, and inducing tachycardia-induced cardiomyopathy. Cellular mechanisms, including myocardial fibrosis, dysregulation of ion channels, and abnormal gap junction function, are central to this process, facilitating both re-entrant and triggered arrhythmias. Conduction disturbances, whether inherent or caused by fibrosis or pacing, compound these effects, aggravating both RV dysfunction and arrhythmia perpetuation. Management strategies must be comprehensive and include pre-emptive approaches to minimize arrhythmias, alongside early detection. Individualized therapies may include catheter ablation and cardiac implantable electronic devices, with treatment tailored to the specific RV phenotype and arrhythmia type. In this review we emphasize the importance of personalized interventions to prevent the vicious cycle of RV dysfunction and arrhythmias in CHD. Further research is essential to optimize therapeutic strategies and address care-limiting knowledge gaps.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Canadian Journal of Cardiology
Canadian Journal of Cardiology 医学-心血管系统
CiteScore
9.20
自引率
8.10%
发文量
546
审稿时长
32 days
期刊介绍: The Canadian Journal of Cardiology (CJC) is the official journal of the Canadian Cardiovascular Society (CCS). The CJC is a vehicle for the international dissemination of new knowledge in cardiology and cardiovascular science, particularly serving as the major venue for Canadian cardiovascular medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信