Preoperative prediction of IDH genotypes and prognosis in adult-type diffuse gliomas: intratumor heterogeneity habitat analysis using dynamic contrast-enhanced MRI and diffusion-weighted imaging.
Xingrui Wang, Zhenhui Xie, Xiaoqing Wang, Yang Song, Shiteng Suo, Yan Ren, Wentao Hu, Yi Zhu, Mengqiu Cao, Yan Zhou
{"title":"Preoperative prediction of IDH genotypes and prognosis in adult-type diffuse gliomas: intratumor heterogeneity habitat analysis using dynamic contrast-enhanced MRI and diffusion-weighted imaging.","authors":"Xingrui Wang, Zhenhui Xie, Xiaoqing Wang, Yang Song, Shiteng Suo, Yan Ren, Wentao Hu, Yi Zhu, Mengqiu Cao, Yan Zhou","doi":"10.1186/s40644-025-00829-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intratumor heterogeneity (ITH) is a key biological characteristic of gliomas. This study aimed to characterize ITH in adult-type diffuse gliomas and assess the feasibility of using habitat imaging based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) to preoperatively predict isocitrate dehydrogenase (IDH) genotypes and prognosis.</p><p><strong>Methods: </strong>Sixty-three adult-type diffuse gliomas with known IDH genotypes were enrolled. Volume transfer constant (K<sup>trans</sup>) and apparent diffusion coefficient (ADC) maps were acquired from DCE-MRI and DWI, respectively. After tumor segmentation, the k-means algorithm clustered K<sup>trans</sup> and ADC image voxels to generate spatial habitats and extract quantitative image features. Receiver operating characteristic (ROC) curves and area under the curve (AUC) were used to evaluate IDH predictive performance. Multivariable logistic regression models were constructed and validated using leave-one-out cross-validation, and the contrast-enhanced subgroup was analyzed independently. Kaplan-Meier and Cox proportional hazards regression analyses were used to investigate the relationship between tumor habitats and progression-free survival (PFS) in the two IDH groups.</p><p><strong>Results: </strong>Three habitats were identified: Habitat 1 (hypo-vasopermeability and hyper-cellularity), Habitat 2 (hypo-vasopermeability and hypo-cellularity), and Habitat 3 (hyper-vasopermeability). Compared to the IDH wild-type group, the IDH mutant group exhibited lower mean K<sup>trans</sup> values in Habitats 1 and 2 (both P < 0.001), higher volume (P < 0.05) and volume percentage (pVol, P < 0.01) of Habitat 2, and lower volume and pVol of Habitat 3 (both P < 0.001). The optimal logistic regression model for IDH prediction yielded an AUC of 0.940 (95% confidence interval [CI]: 0.880-1.000), which improved to 0.948 (95% CI: 0.890-1.000) after cross-validation. Habitat 2 contributed the most to the model, consistent with the findings in the contrast-enhanced subgroup. In IDH wild-type group, pVol of Habitat 2 was identified as a significant risk factor for PFS (high- vs. low-pVol subgroup, hazard ratio = 2.204, 95% CI: 1.061-4.580, P = 0.034), with a value below 0.26 indicating a 5-month median survival benefit.</p><p><strong>Conclusions: </strong>Habitat imaging employing DCE-MRI and DWI may facilitate the characterization of ITH in adult-type diffuse gliomas and serve as a valuable adjunct in the preoperative prediction of IDH genotypes and prognosis.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"25 1","pages":"11"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-025-00829-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Intratumor heterogeneity (ITH) is a key biological characteristic of gliomas. This study aimed to characterize ITH in adult-type diffuse gliomas and assess the feasibility of using habitat imaging based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) to preoperatively predict isocitrate dehydrogenase (IDH) genotypes and prognosis.
Methods: Sixty-three adult-type diffuse gliomas with known IDH genotypes were enrolled. Volume transfer constant (Ktrans) and apparent diffusion coefficient (ADC) maps were acquired from DCE-MRI and DWI, respectively. After tumor segmentation, the k-means algorithm clustered Ktrans and ADC image voxels to generate spatial habitats and extract quantitative image features. Receiver operating characteristic (ROC) curves and area under the curve (AUC) were used to evaluate IDH predictive performance. Multivariable logistic regression models were constructed and validated using leave-one-out cross-validation, and the contrast-enhanced subgroup was analyzed independently. Kaplan-Meier and Cox proportional hazards regression analyses were used to investigate the relationship between tumor habitats and progression-free survival (PFS) in the two IDH groups.
Results: Three habitats were identified: Habitat 1 (hypo-vasopermeability and hyper-cellularity), Habitat 2 (hypo-vasopermeability and hypo-cellularity), and Habitat 3 (hyper-vasopermeability). Compared to the IDH wild-type group, the IDH mutant group exhibited lower mean Ktrans values in Habitats 1 and 2 (both P < 0.001), higher volume (P < 0.05) and volume percentage (pVol, P < 0.01) of Habitat 2, and lower volume and pVol of Habitat 3 (both P < 0.001). The optimal logistic regression model for IDH prediction yielded an AUC of 0.940 (95% confidence interval [CI]: 0.880-1.000), which improved to 0.948 (95% CI: 0.890-1.000) after cross-validation. Habitat 2 contributed the most to the model, consistent with the findings in the contrast-enhanced subgroup. In IDH wild-type group, pVol of Habitat 2 was identified as a significant risk factor for PFS (high- vs. low-pVol subgroup, hazard ratio = 2.204, 95% CI: 1.061-4.580, P = 0.034), with a value below 0.26 indicating a 5-month median survival benefit.
Conclusions: Habitat imaging employing DCE-MRI and DWI may facilitate the characterization of ITH in adult-type diffuse gliomas and serve as a valuable adjunct in the preoperative prediction of IDH genotypes and prognosis.
Cancer ImagingONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍:
Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology.
The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include:
Breast Imaging
Chest
Complications of treatment
Ear, Nose & Throat
Gastrointestinal
Hepatobiliary & Pancreatic
Imaging biomarkers
Interventional
Lymphoma
Measurement of tumour response
Molecular functional imaging
Musculoskeletal
Neuro oncology
Nuclear Medicine
Paediatric.