reg-eQTL: Integrating transcription factor effects to unveil regulatory variants.

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
Rekha Mudappathi, Tatiana Patton, Hai Chen, Ping Yang, Zhifu Sun, Panwen Wang, Chang-Xin Shi, Junwen Wang, Li Liu
{"title":"reg-eQTL: Integrating transcription factor effects to unveil regulatory variants.","authors":"Rekha Mudappathi, Tatiana Patton, Hai Chen, Ping Yang, Zhifu Sun, Panwen Wang, Chang-Xin Shi, Junwen Wang, Li Liu","doi":"10.1016/j.ajhg.2025.01.015","DOIUrl":null,"url":null,"abstract":"<p><p>Regulatory single-nucleotide variants (rSNVs) in noncoding regions of the genome play a crucial role in gene transcription by altering transcription factor (TF) binding, chromatin states, and other epigenetic modifications. Existing expression quantitative trait locus (eQTL) methods identify genomic loci associated with gene-expression changes, but they often fall short in pinpointing causal variants. We introduce reg-eQTL, a computational method that incorporates TF effects and interactions with genetic variants into eQTL analysis. This approach provides deeper insights into the regulatory mechanisms, bringing us one step closer to identifying potential causal variants by uncovering how TFs interact with SNVs to influence gene expression. This method defines a trio consisting of a genetic variant, a target gene, and a TF and tests its impact on gene transcription. In comprehensive simulations, reg-eQTL shows improved power of detecting rSNVs with low population frequency, weak effects, and synergetic interaction with TF as compared to traditional eQTL methods. Application of reg-eQTL to GTEx data from lung, brain, and whole-blood tissues uncovered regulatory trios that include eQTLs and increased the number of eQTLs shared across tissue types. Regulatory networks constructed on the basis of these trios reveal intricate gene regulation across tissue types.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.01.015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Regulatory single-nucleotide variants (rSNVs) in noncoding regions of the genome play a crucial role in gene transcription by altering transcription factor (TF) binding, chromatin states, and other epigenetic modifications. Existing expression quantitative trait locus (eQTL) methods identify genomic loci associated with gene-expression changes, but they often fall short in pinpointing causal variants. We introduce reg-eQTL, a computational method that incorporates TF effects and interactions with genetic variants into eQTL analysis. This approach provides deeper insights into the regulatory mechanisms, bringing us one step closer to identifying potential causal variants by uncovering how TFs interact with SNVs to influence gene expression. This method defines a trio consisting of a genetic variant, a target gene, and a TF and tests its impact on gene transcription. In comprehensive simulations, reg-eQTL shows improved power of detecting rSNVs with low population frequency, weak effects, and synergetic interaction with TF as compared to traditional eQTL methods. Application of reg-eQTL to GTEx data from lung, brain, and whole-blood tissues uncovered regulatory trios that include eQTLs and increased the number of eQTLs shared across tissue types. Regulatory networks constructed on the basis of these trios reveal intricate gene regulation across tissue types.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信