The synergistic effect and mechanism of in-site algae inactivation in simulated ballast water by dimension-stable anode electrocatalysis.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES
Jin Zhang, Kexin Xing, Jinming Cui, Jun Du
{"title":"The synergistic effect and mechanism of in-site algae inactivation in simulated ballast water by dimension-stable anode electrocatalysis.","authors":"Jin Zhang, Kexin Xing, Jinming Cui, Jun Du","doi":"10.1007/s11356-025-36060-9","DOIUrl":null,"url":null,"abstract":"<p><p>The spread of harmful algae through ballast water poses serious threats to marine ecosystems, so the development of effective methods to inactivate the algae and to treat the harmful pollution in ballast water was important. Electrocatalysis technology is safe and reliable and has been widely used in water treatment. In this paper, a dimensionally stable anode (DSA) electrocatalysis system was studied to investigate the efficiency of in-site algae inactivation in simulated ballast water. The studies showed that the DSA electrocatalysis system showed good efficiency for algae inactivation in ballast water, and the inactivation rate varied depending on the algae and could be optimized by adjusting hydraulic retention time (HTR), current density, and electrode surface area. Furthermore, the DSA electrocatalysis provided a significantly sustained inactivation effect on algae in the holding time after electrolytic operation. The inactivation rate for Platymonas helgolandica and Heterosigma akashiwo reached 99.27% and 99.09%, respectively, in short treatment time (HRT of 60 s), and the energy consumption was 0.350 kWh/L and 2.654 kWh/L. Besides the direct oxidation and reduction of electric field, the reactive oxides generated in the DSA electrocatalysis process were the primary factors which caused algae inactivation. The total residual oxides (TRO) damaged algae cells and led to algae inactivation. The DSA electrocatalysis led to lipid peroxidation in algal cell membranes, causing structural damage and metabolic failure. The DSA electrocatalysis was an effective and clean technology for the in-site algae removal in ballast water.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-36060-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The spread of harmful algae through ballast water poses serious threats to marine ecosystems, so the development of effective methods to inactivate the algae and to treat the harmful pollution in ballast water was important. Electrocatalysis technology is safe and reliable and has been widely used in water treatment. In this paper, a dimensionally stable anode (DSA) electrocatalysis system was studied to investigate the efficiency of in-site algae inactivation in simulated ballast water. The studies showed that the DSA electrocatalysis system showed good efficiency for algae inactivation in ballast water, and the inactivation rate varied depending on the algae and could be optimized by adjusting hydraulic retention time (HTR), current density, and electrode surface area. Furthermore, the DSA electrocatalysis provided a significantly sustained inactivation effect on algae in the holding time after electrolytic operation. The inactivation rate for Platymonas helgolandica and Heterosigma akashiwo reached 99.27% and 99.09%, respectively, in short treatment time (HRT of 60 s), and the energy consumption was 0.350 kWh/L and 2.654 kWh/L. Besides the direct oxidation and reduction of electric field, the reactive oxides generated in the DSA electrocatalysis process were the primary factors which caused algae inactivation. The total residual oxides (TRO) damaged algae cells and led to algae inactivation. The DSA electrocatalysis led to lipid peroxidation in algal cell membranes, causing structural damage and metabolic failure. The DSA electrocatalysis was an effective and clean technology for the in-site algae removal in ballast water.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信