Polyurethane foam degradation combining ozonization and mealworm biodegradation and its exploitation.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES
Margarita Ros, Paula Lidon, Angel Carrascosa, Marta Muñoz, Maria Virtudes Navarro, Jose Maria Orts, Jose Antonio Pascual
{"title":"Polyurethane foam degradation combining ozonization and mealworm biodegradation and its exploitation.","authors":"Margarita Ros, Paula Lidon, Angel Carrascosa, Marta Muñoz, Maria Virtudes Navarro, Jose Maria Orts, Jose Antonio Pascual","doi":"10.1007/s11356-025-36029-8","DOIUrl":null,"url":null,"abstract":"<p><p>The biodegradation of polyurethane foam (PU foam) using a combination of oxidative pre-treatment (ozonization) and Tenebrio molitor (T. molitor) mealworms was conducted in this study. Different degrees of ozone oxidation (0%, 25%, and 50%) were applied to PU foam, which was subsequently fed to mealworms. The mealworms' survival and growth were then compared to mealworms receiving a normal diet (bran). Results showed that mealworms fed with non-oxidized PU foam (PUF0) exhibited a higher consumption rate (11.8%) than those fed with 25% (PUF25) and 50% (PUF50) oxidized PU foam (7.7% and 5.7%, respectively). The survival rate was similar across all the PU foam diets and the bran diet. Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) analyses revealed minor structural changes in the PU foam. The gut microbiota analysis showed a significant correlation between the PU foam and bran diets. Among the different oxidized PU, distinct microbial community profiles were also observed, with the genus Klebsiella consistently present across the PU foam diets. The ozone pre-treatment altered the palatability and degradation of the PU foam by mealworms, while the mealworm frass and chitin obtained could potentially be used as resources for agricultural and industrial applications that would close the circular bio-economy cycle.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-36029-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The biodegradation of polyurethane foam (PU foam) using a combination of oxidative pre-treatment (ozonization) and Tenebrio molitor (T. molitor) mealworms was conducted in this study. Different degrees of ozone oxidation (0%, 25%, and 50%) were applied to PU foam, which was subsequently fed to mealworms. The mealworms' survival and growth were then compared to mealworms receiving a normal diet (bran). Results showed that mealworms fed with non-oxidized PU foam (PUF0) exhibited a higher consumption rate (11.8%) than those fed with 25% (PUF25) and 50% (PUF50) oxidized PU foam (7.7% and 5.7%, respectively). The survival rate was similar across all the PU foam diets and the bran diet. Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) analyses revealed minor structural changes in the PU foam. The gut microbiota analysis showed a significant correlation between the PU foam and bran diets. Among the different oxidized PU, distinct microbial community profiles were also observed, with the genus Klebsiella consistently present across the PU foam diets. The ozone pre-treatment altered the palatability and degradation of the PU foam by mealworms, while the mealworm frass and chitin obtained could potentially be used as resources for agricultural and industrial applications that would close the circular bio-economy cycle.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信