Enhancing fluorescence correlation spectroscopy with machine learning to infer anomalous molecular motion.

IF 3.2 3区 生物学 Q2 BIOPHYSICS
Biophysical journal Pub Date : 2025-03-04 Epub Date: 2025-02-06 DOI:10.1016/j.bpj.2025.01.026
Nathan Quiblier, Jan-Michael Rye, Pierre Leclerc, Henri Truong, Abdelkrim Hannou, Laurent Heliot, Hugues Berry
{"title":"Enhancing fluorescence correlation spectroscopy with machine learning to infer anomalous molecular motion.","authors":"Nathan Quiblier, Jan-Michael Rye, Pierre Leclerc, Henri Truong, Abdelkrim Hannou, Laurent Heliot, Hugues Berry","doi":"10.1016/j.bpj.2025.01.026","DOIUrl":null,"url":null,"abstract":"<p><p>The random motion of molecules in living cells has consistently been reported to deviate from standard Brownian motion, a behavior coined as \"anomalous diffusion.\" To study this phenomenon in living cells, fluorescence correlation spectroscopy (FCS) and single-particle tracking (SPT) are the two main methods of reference. In opposition to SPT, FCS, with its classical analysis methodology, cannot consider models of motion for which no analytical expression of the auto-correlation function is known. This excludes, for instance, anomalous continuous-time random walks and random walk on fractal. Moreover, the whole acquisition sequence of the classical FCS methodology takes several tens of minutes. Here, we propose a new analysis approach that frees FCS of these limitations. Our approach associates each individual FCS recording with a vector of features based on an estimator of the auto-correlation function and uses machine learning to infer the underlying model of motion and to estimate the values of the motion parameters. Using simulated recordings, we show that this approach endows FCS with the capacity to distinguish between a range of standard and anomalous random motions, including continuous-time random walk and random walk on fractal. Our approach exhibits performances comparable to the best-in-class state-of-the-art algorithms for SPT and can be used with a range of FCS setup parameters. Since it can be applied on individual recordings of short duration, we show that, with our method, FCS can be used to monitor rapid changes of the motion parameters. Finally, we apply our method on experimental FCS recordings of calibrated fluorescent beads in increasing concentrations of glycerol in water. Our results accurately predict that the beads follow Brownian motion with a diffusion coefficient and anomalous exponent, which agree with classical predictions from Stokes-Einstein law even at large glycerol concentrations. Taken together, our approach significantly augments the analysis power of FCS to capacities that are similar to state-of-the-art SPT approaches.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":"844-856"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897545/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.01.026","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The random motion of molecules in living cells has consistently been reported to deviate from standard Brownian motion, a behavior coined as "anomalous diffusion." To study this phenomenon in living cells, fluorescence correlation spectroscopy (FCS) and single-particle tracking (SPT) are the two main methods of reference. In opposition to SPT, FCS, with its classical analysis methodology, cannot consider models of motion for which no analytical expression of the auto-correlation function is known. This excludes, for instance, anomalous continuous-time random walks and random walk on fractal. Moreover, the whole acquisition sequence of the classical FCS methodology takes several tens of minutes. Here, we propose a new analysis approach that frees FCS of these limitations. Our approach associates each individual FCS recording with a vector of features based on an estimator of the auto-correlation function and uses machine learning to infer the underlying model of motion and to estimate the values of the motion parameters. Using simulated recordings, we show that this approach endows FCS with the capacity to distinguish between a range of standard and anomalous random motions, including continuous-time random walk and random walk on fractal. Our approach exhibits performances comparable to the best-in-class state-of-the-art algorithms for SPT and can be used with a range of FCS setup parameters. Since it can be applied on individual recordings of short duration, we show that, with our method, FCS can be used to monitor rapid changes of the motion parameters. Finally, we apply our method on experimental FCS recordings of calibrated fluorescent beads in increasing concentrations of glycerol in water. Our results accurately predict that the beads follow Brownian motion with a diffusion coefficient and anomalous exponent, which agree with classical predictions from Stokes-Einstein law even at large glycerol concentrations. Taken together, our approach significantly augments the analysis power of FCS to capacities that are similar to state-of-the-art SPT approaches.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信