Oil-in-water Pickering emulsions with Buriti vegetable oil stabilized with cellulose nanofibrils: Preparation, stability and antimicrobial properties.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Greiciele S da Ferreira, Daniel J da Silva, Éder R de Oliveira, Derval S Rosa
{"title":"Oil-in-water Pickering emulsions with Buriti vegetable oil stabilized with cellulose nanofibrils: Preparation, stability and antimicrobial properties.","authors":"Greiciele S da Ferreira, Daniel J da Silva, Éder R de Oliveira, Derval S Rosa","doi":"10.1016/j.ijbiomac.2025.140233","DOIUrl":null,"url":null,"abstract":"<p><p>Mauritia flexuosa (Buriti) vegetable oil (OV) has attracted technological interest in various sectors, including pharmaceuticals, food, and beverages, because of its excellent antioxidant activity. The active OV components are fatty compounds, and stability is required for proper application. In this work, we investigated OV-in-water Pickering emulsions stabilized by cellulose nanofibrils (CNF). CNF is sustainable, economically viable, and environmentally friendly, and it is suitable for developing products in an eco-friendly way. The factorial design of experiments (DoE) indicates that the amount of CNF and the homogenization time significantly affect the emulsion, preventing coalescence over 30 days. Fourier-transform Raman spectroscopy (FT-Raman) and Fourier-transform infrared spectroscopy (FTIR) show that CNF stabilizes the OV droplets through induced dipole-dipole interactions and hydrogen bonds. Rheological analysis was relevant to the relationship between internal microstructure strength and viscous flow behavior of the emulsions. A novel approach enabled the identification of the CNF stabilization mechanism in the emulsion system via fluorescence microscopy. Diameter distribution measurements and steady-state rheological tests indicate that the emulsions have good stability at room temperature and suitable steady-state viscosity for food applications and beverage products as they show pronounced shear thinning behavior for cream and lotion skin care products.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140233"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140233","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mauritia flexuosa (Buriti) vegetable oil (OV) has attracted technological interest in various sectors, including pharmaceuticals, food, and beverages, because of its excellent antioxidant activity. The active OV components are fatty compounds, and stability is required for proper application. In this work, we investigated OV-in-water Pickering emulsions stabilized by cellulose nanofibrils (CNF). CNF is sustainable, economically viable, and environmentally friendly, and it is suitable for developing products in an eco-friendly way. The factorial design of experiments (DoE) indicates that the amount of CNF and the homogenization time significantly affect the emulsion, preventing coalescence over 30 days. Fourier-transform Raman spectroscopy (FT-Raman) and Fourier-transform infrared spectroscopy (FTIR) show that CNF stabilizes the OV droplets through induced dipole-dipole interactions and hydrogen bonds. Rheological analysis was relevant to the relationship between internal microstructure strength and viscous flow behavior of the emulsions. A novel approach enabled the identification of the CNF stabilization mechanism in the emulsion system via fluorescence microscopy. Diameter distribution measurements and steady-state rheological tests indicate that the emulsions have good stability at room temperature and suitable steady-state viscosity for food applications and beverage products as they show pronounced shear thinning behavior for cream and lotion skin care products.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信