Zhe Wang, Håkon Emil Kristiansen, Thomas Bondo Pedersen, T Daniel Crawford
{"title":"Real-Time Coupled Cluster Theory with Approximate Triples.","authors":"Zhe Wang, Håkon Emil Kristiansen, Thomas Bondo Pedersen, T Daniel Crawford","doi":"10.1021/acs.jpca.4c08499","DOIUrl":null,"url":null,"abstract":"<p><p>In order to explore the effects of high levels of electron correlation on the real-time coupled cluster formalism and algorithmic behavior, we introduce a time-dependent implementation of the CC3 singles, doubles, and approximate triples method. We demonstrate the validity of our derivation and implementation using specific applications of frequency-dependent properties. Terms with triples are calculated and added to the existing CCSD equations, giving the method a nominal <math><mi>O</mi></math>(<i>N</i><sup>7</sup>) scaling. We also use a graphics processing unit accelerated implementation to reduce the computational cost, which we find can speed up the calculation by up to a factor of 13 for test cases of water clusters. In addition, we compare the impact of using single-precision arithmetic compared to conventional double-precision arithmetic. We find no significant difference in polarizabilities and optical-rotation tensor results but a somewhat larger error for first hyperpolarizabilities. Compared to linear response CC3 results, the percentage errors of RT-CC3 polarizabilities and RT-CC3 first hyperpolarizabilities are under 0.1 and 1%, respectively, for a water-molecule test case in a double-ζ basis set. Furthermore, we compare the dynamic polarizabilities obtained using RT-CC3, RT-CCSD, and time-dependent nonorthogonal orbital-optimized coupled cluster doubles (TDNOCCDs) in order to examine the performance of RT-CC3 and the orbital-optimization effect using a set of ten-electron systems.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"1908-1927"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c08499","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In order to explore the effects of high levels of electron correlation on the real-time coupled cluster formalism and algorithmic behavior, we introduce a time-dependent implementation of the CC3 singles, doubles, and approximate triples method. We demonstrate the validity of our derivation and implementation using specific applications of frequency-dependent properties. Terms with triples are calculated and added to the existing CCSD equations, giving the method a nominal (N7) scaling. We also use a graphics processing unit accelerated implementation to reduce the computational cost, which we find can speed up the calculation by up to a factor of 13 for test cases of water clusters. In addition, we compare the impact of using single-precision arithmetic compared to conventional double-precision arithmetic. We find no significant difference in polarizabilities and optical-rotation tensor results but a somewhat larger error for first hyperpolarizabilities. Compared to linear response CC3 results, the percentage errors of RT-CC3 polarizabilities and RT-CC3 first hyperpolarizabilities are under 0.1 and 1%, respectively, for a water-molecule test case in a double-ζ basis set. Furthermore, we compare the dynamic polarizabilities obtained using RT-CC3, RT-CCSD, and time-dependent nonorthogonal orbital-optimized coupled cluster doubles (TDNOCCDs) in order to examine the performance of RT-CC3 and the orbital-optimization effect using a set of ten-electron systems.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.