Flavin adenine dinucleotide (FAD) as a non-canonical RNA cap: Mechanisms, functions, and emerging insights

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Pablo Gonzalez-Jabalera, Andres Jäschke
{"title":"Flavin adenine dinucleotide (FAD) as a non-canonical RNA cap: Mechanisms, functions, and emerging insights","authors":"Pablo Gonzalez-Jabalera,&nbsp;Andres Jäschke","doi":"10.1016/j.abb.2025.110326","DOIUrl":null,"url":null,"abstract":"<div><div>Flavin adenine dinucleotide (FAD), a versatile metabolic cofactor, is emerging as an important non-canonical RNA cap across various life domains. This review explores FAD's dual role as a coenzyme and an RNA modifier, focusing on its incorporation as a 5′ cap structure during transcription initiation and its subsequent implications for RNA metabolism and cellular functions. A comprehensive view of the mechanisms underlying FAD capping and decapping is presented, highlighting key enzymes that play a role in these processes. FAD-capped RNA is shown to play critical roles in viral replication, as demonstrated in the Hepatitis C virus, where FAD capping supports cellular immune evasion. Analytical techniques, including mass spectrometry and innovative sequencing methodologies, have advanced our understanding of the flavin cap, enabling its identification and quantification in different biological systems. This review underscores the significance of FAD-RNA capping as a novel regulatory mechanism, proposes innovative methodologies for its study, and emphasizes its potential therapeutic applications in viral and cellular biology.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"766 ","pages":"Article 110326"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986125000396","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Flavin adenine dinucleotide (FAD), a versatile metabolic cofactor, is emerging as an important non-canonical RNA cap across various life domains. This review explores FAD's dual role as a coenzyme and an RNA modifier, focusing on its incorporation as a 5′ cap structure during transcription initiation and its subsequent implications for RNA metabolism and cellular functions. A comprehensive view of the mechanisms underlying FAD capping and decapping is presented, highlighting key enzymes that play a role in these processes. FAD-capped RNA is shown to play critical roles in viral replication, as demonstrated in the Hepatitis C virus, where FAD capping supports cellular immune evasion. Analytical techniques, including mass spectrometry and innovative sequencing methodologies, have advanced our understanding of the flavin cap, enabling its identification and quantification in different biological systems. This review underscores the significance of FAD-RNA capping as a novel regulatory mechanism, proposes innovative methodologies for its study, and emphasizes its potential therapeutic applications in viral and cellular biology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信