Delivery of Tempol from Polyurethane Nanocapsules to Address Oxidative Stress Post-Injury.

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Temitope Ale, Tolulope Ale, Kimberly J Baker, Kameel M Zuniga, Jack Hutcheson, Erin Lavik
{"title":"Delivery of Tempol from Polyurethane Nanocapsules to Address Oxidative Stress Post-Injury.","authors":"Temitope Ale, Tolulope Ale, Kimberly J Baker, Kameel M Zuniga, Jack Hutcheson, Erin Lavik","doi":"10.1021/acs.bioconjchem.4c00360","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injuries (TBIs) result in significant morbidity and mortality due to the cascade of secondary injuries involving oxidative stress and neuroinflammation. The development of effective therapeutic strategies to mitigate these effects is critical. This study explores the fabrication and characterization of polyurethane nanocapsules for the sustained delivery of Tempol, a potent antioxidant. The nanocapsules were designed to extend the release of Tempol over a 30-day period, addressing the prolonged oxidative stress observed post-TBI. Tempol-loaded polyurethane nanocapsules were synthesized using interfacial polymerization and nanoemulsion techniques. Two generations of nanocapsules were produced, differing in Tempol loading and PEGylation levels. The first generation, with lower Tempol loading, exhibited an average size of 159.8 ± 12.61 nm and a Z-average diameter of 771.9 ± 87.95 nm. The second generation, with higher Tempol loading, showed an average size of 141.4 ± 6.13 nm and a Z-average diameter of 560.7 ± 171.1 nm. The zeta potentials were -18.9 ± 5.02 mV and -11.9 ± 3.54 mV for the first and second generations, respectively. Both generations demonstrated the presence of urethane linkages, confirmed by Fourier Transform Infrared Spectroscopy (FTIR). Loading studies revealed Tempol concentrations of 61.94 ± 3.04 μg/mg for the first generation and 77.61 ± 3.04 μg/mg for the second generation nanocapsules. Release profiles indicated an initial burst followed by a sustained, nearly linear release over 30 days. The higher PEGylation in the second generation nanocapsules is advantageous for intravenous administration, potentially enhancing their therapeutic efficacy in TBI treatment. This study demonstrates the feasibility of using polyurethane nanocapsules for the prolonged delivery of Tempol, offering a promising approach to manage oxidative stress and improve outcomes in TBI patients. Future work will include testing these nanocapsules in vivo to determine their potential at modulating recovery from TBI.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00360","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Traumatic brain injuries (TBIs) result in significant morbidity and mortality due to the cascade of secondary injuries involving oxidative stress and neuroinflammation. The development of effective therapeutic strategies to mitigate these effects is critical. This study explores the fabrication and characterization of polyurethane nanocapsules for the sustained delivery of Tempol, a potent antioxidant. The nanocapsules were designed to extend the release of Tempol over a 30-day period, addressing the prolonged oxidative stress observed post-TBI. Tempol-loaded polyurethane nanocapsules were synthesized using interfacial polymerization and nanoemulsion techniques. Two generations of nanocapsules were produced, differing in Tempol loading and PEGylation levels. The first generation, with lower Tempol loading, exhibited an average size of 159.8 ± 12.61 nm and a Z-average diameter of 771.9 ± 87.95 nm. The second generation, with higher Tempol loading, showed an average size of 141.4 ± 6.13 nm and a Z-average diameter of 560.7 ± 171.1 nm. The zeta potentials were -18.9 ± 5.02 mV and -11.9 ± 3.54 mV for the first and second generations, respectively. Both generations demonstrated the presence of urethane linkages, confirmed by Fourier Transform Infrared Spectroscopy (FTIR). Loading studies revealed Tempol concentrations of 61.94 ± 3.04 μg/mg for the first generation and 77.61 ± 3.04 μg/mg for the second generation nanocapsules. Release profiles indicated an initial burst followed by a sustained, nearly linear release over 30 days. The higher PEGylation in the second generation nanocapsules is advantageous for intravenous administration, potentially enhancing their therapeutic efficacy in TBI treatment. This study demonstrates the feasibility of using polyurethane nanocapsules for the prolonged delivery of Tempol, offering a promising approach to manage oxidative stress and improve outcomes in TBI patients. Future work will include testing these nanocapsules in vivo to determine their potential at modulating recovery from TBI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信