Stabilisation of a μ2-Oxido Bridge Dinuclear VO3+ Core by Incorporating Redox-Active Tridentate (NNO)-Donor Ligands

IF 1.1 3区 化学 Q4 CHEMISTRY, INORGANIC & NUCLEAR
A. S. Roy, S. Ghosh, S. Bera, S. Maity
{"title":"Stabilisation of a μ2-Oxido Bridge Dinuclear VO3+ Core by Incorporating Redox-Active Tridentate (NNO)-Donor Ligands","authors":"A. S. Roy,&nbsp;S. Ghosh,&nbsp;S. Bera,&nbsp;S. Maity","doi":"10.1134/S1070328424600840","DOIUrl":null,"url":null,"abstract":"<p>Two diamagnetic dinuclear μ<sub>2</sub>-oxido bridged oxovanadium(V) complexes, [<span>\\({\\text{V}}_{2}^{{\\text{V}}}\\)</span>O<sub>4</sub>(L<sub>1</sub>)<sub>2</sub>] (<b>I</b>), (L<sub>1</sub>H = (<i>E</i>)-1-(pyridin-2-yldiazenyl)naphthalen-2-ol, and [<span>\\({\\text{V}}_{2}^{{\\text{V}}}\\)</span>O<sub>4</sub>(L<sub>2</sub>)<sub>2</sub>] (<b>II</b>) L<sub>2</sub>H = (<i>E</i>)-4-methyl-2-(thiazol-2-yldiazenyl)phenol) have been synthesised by using different “redox-active” tridentate NNO-donor ligands and VO(acac)<sub>2</sub>. Both complexes have been well characterised by FT-IR, UV-vis, NMR, ESI-MS spectroscopy, and cyclic voltammetry data analysis. Geometries of <b>I</b> and <b>II</b> are confirmed by the single-crystal X-ray crystallography. Complexes have two symmetrical oxovanadium cores (in <i>anti</i>-angular configurations) held by two μ-O bridging ions. The bond angle between the central VO<sup>3+</sup> unit and the oxido bridges V(1)−O(2)−V(1A) is 101.9(3)° and 100.11(12)°, respectively in <b>I</b> and <b>II</b>. In complex <b>II</b>, vanadium centres are separated from each other by 3.0672 (12) Å, whereas it is slightly higher in complex <b>I</b> (3.162 Å). The unsymmetrical bridge bond lengths, {V(1)–O(2) and V(1)–O(2A)}, are 1.660(6) and 2.371(7) in <b>I</b>, whereas 1.663(3) and 2.302(3) Å in <b>II</b>. Both complexes exhibit significant absorption peaks in the visible region due to (LMCT) ligand-to-metal as well as (ILCT) intra-ligand charge transfer. The cyclic voltammetry study shows the stepwise electron reduction for both <b>I</b> and <b>II</b>. The first reduction at –0.70 V is due to (<span>\\({{{\\text{L}}_{{{\\text{azo}}}}^{ - }} \\mathord{\\left/ {\\vphantom {{{\\text{L}}_{{{\\text{azo}}}}^{ - }} {{\\text{L}}_{{{\\text{azo}}}}^{{\\centerdot 2 - }}}}} \\right. \\kern-0em} {{\\text{L}}_{{{\\text{azo}}}}^{{\\centerdot 2 - }}}}\\)</span>) (L = L<sub>1</sub> (<b>I</b>) and L = L<sub>2</sub> (<b>II</b>)), whereas the second reduction occurs at around –1.30 V and may be due to V<sup>V</sup>/V<sup>IV</sup> redox couple. Chemically generated in-situ mono-reduced analogues <b>I</b><sup>–</sup> and <b>II</b><sup>–</sup> produce single-line isotropic EPR spectra with ‘g’ values of 2.003 and 2.006, respectively. These signals indicate that organic radicals are present in the systems. Nevertheless, no further equivalent hyperfine splitting (HFS) of the magnetic nuclei of organic radicals was detected in any of the reduced species despite varying the concentration, sweep range, and modulation parameters. The Mulliken spin density plots of <b>I</b><sup>–</sup> and EPR spectra authenticate that mono-reduced analogues can be defined as azo-anion radical-coupled oxovanadium(V) of types [<span>\\({\\text{V}}_{2}^{{\\text{V}}}\\)</span>O<sub>4</sub><span>\\(({\\text{L}}_{1}^{ - })_{2}^{{\\centerdot - }}\\)</span>] (<b>I</b><sup>–</sup>) and [<span>\\({\\text{V}}_{2}^{{\\text{V}}}\\)</span>O<sub>4</sub><span>\\(({\\text{L}}_{2}^{ - })_{2}^{{\\centerdot - }}\\)</span>] (<b>II</b><sup>–</sup>).</p>","PeriodicalId":759,"journal":{"name":"Russian Journal of Coordination Chemistry","volume":"50 11","pages":"987 - 1000"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Coordination Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1070328424600840","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Two diamagnetic dinuclear μ2-oxido bridged oxovanadium(V) complexes, [\({\text{V}}_{2}^{{\text{V}}}\)O4(L1)2] (I), (L1H = (E)-1-(pyridin-2-yldiazenyl)naphthalen-2-ol, and [\({\text{V}}_{2}^{{\text{V}}}\)O4(L2)2] (II) L2H = (E)-4-methyl-2-(thiazol-2-yldiazenyl)phenol) have been synthesised by using different “redox-active” tridentate NNO-donor ligands and VO(acac)2. Both complexes have been well characterised by FT-IR, UV-vis, NMR, ESI-MS spectroscopy, and cyclic voltammetry data analysis. Geometries of I and II are confirmed by the single-crystal X-ray crystallography. Complexes have two symmetrical oxovanadium cores (in anti-angular configurations) held by two μ-O bridging ions. The bond angle between the central VO3+ unit and the oxido bridges V(1)−O(2)−V(1A) is 101.9(3)° and 100.11(12)°, respectively in I and II. In complex II, vanadium centres are separated from each other by 3.0672 (12) Å, whereas it is slightly higher in complex I (3.162 Å). The unsymmetrical bridge bond lengths, {V(1)–O(2) and V(1)–O(2A)}, are 1.660(6) and 2.371(7) in I, whereas 1.663(3) and 2.302(3) Å in II. Both complexes exhibit significant absorption peaks in the visible region due to (LMCT) ligand-to-metal as well as (ILCT) intra-ligand charge transfer. The cyclic voltammetry study shows the stepwise electron reduction for both I and II. The first reduction at –0.70 V is due to (\({{{\text{L}}_{{{\text{azo}}}}^{ - }} \mathord{\left/ {\vphantom {{{\text{L}}_{{{\text{azo}}}}^{ - }} {{\text{L}}_{{{\text{azo}}}}^{{\centerdot 2 - }}}}} \right. \kern-0em} {{\text{L}}_{{{\text{azo}}}}^{{\centerdot 2 - }}}}\)) (L = L1 (I) and L = L2 (II)), whereas the second reduction occurs at around –1.30 V and may be due to VV/VIV redox couple. Chemically generated in-situ mono-reduced analogues I and II produce single-line isotropic EPR spectra with ‘g’ values of 2.003 and 2.006, respectively. These signals indicate that organic radicals are present in the systems. Nevertheless, no further equivalent hyperfine splitting (HFS) of the magnetic nuclei of organic radicals was detected in any of the reduced species despite varying the concentration, sweep range, and modulation parameters. The Mulliken spin density plots of I and EPR spectra authenticate that mono-reduced analogues can be defined as azo-anion radical-coupled oxovanadium(V) of types [\({\text{V}}_{2}^{{\text{V}}}\)O4\(({\text{L}}_{1}^{ - })_{2}^{{\centerdot - }}\)] (I) and [\({\text{V}}_{2}^{{\text{V}}}\)O4\(({\text{L}}_{2}^{ - })_{2}^{{\centerdot - }}\)] (II).

Abstract Image

氧化还原活性三齿体(NNO)配体对μ2-氧化桥双核VO3+核的稳定作用
采用不同的“氧化还原活性”三齿nno给体和VO(acac)2合成了两个抗磁性双核μ2-氧化桥接钒(V)配合物[\({\text{V}}_{2}^{{\text{V}}}\) O4(L1)2] (I)、(L1H = (E)-1-(吡啶-2-基二氮基)萘-2-醇和[\({\text{V}}_{2}^{{\text{V}}}\) O4(L2)2] (II) L2H = (E)-4-甲基-2-(噻唑-2-基二氮基)苯酚。这两种配合物都通过FT-IR, UV-vis, NMR, ESI-MS光谱和循环伏安数据分析得到了很好的表征。单晶x射线晶体学证实了I和II的几何形状。配合物有两个对称的氧钒核(反角构型),由两个μ-O桥接离子保持。在I和II中,中心VO3+单元与氧化桥V(1)−O(2)−V(1A)之间的键角分别为101.9(3)°和100.11(12)°。在配合物II中,钒中心之间的距离为3.0672 (12)Å,而在配合物I中,钒中心之间的距离略高(3.162 Å)。不对称桥键长度{V(1) -O(2)和V(1) -O (2A)}在I中分别为1.660(6)和2.371(7),而在II中分别为1.663(3)和2.302(3)Å。由于(LMCT)配体到金属以及(ILCT)配体内部电荷转移,这两种配合物在可见光区都表现出显著的吸收峰。循环伏安法研究表明,I和II的电子还原是逐步进行的。在-0.70 V时的第一次还原是由于(\({{{\text{L}}_{{{\text{azo}}}}^{ - }} \mathord{\left/ {\vphantom {{{\text{L}}_{{{\text{azo}}}}^{ - }} {{\text{L}}_{{{\text{azo}}}}^{{\centerdot 2 - }}}}} \right. \kern-0em} {{\text{L}}_{{{\text{azo}}}}^{{\centerdot 2 - }}}}\)) (L = L1 (I)和L = L2 (II)),而第二次还原发生在-1.30 V左右,可能是由于VV/VIV氧化还原对。化学生成的原位单还原类似物I -和II -产生单线各向同性EPR光谱,g值分别为2.003和2.006。这些信号表明系统中存在有机自由基。然而,尽管改变了浓度、扫描范围和调制参数,在任何还原物质中都没有检测到有机自由基磁核的进一步等效超细分裂(HFS)。I -和EPR谱的Mulliken自旋密度图证实了单还原类似物可以定义为[\({\text{V}}_{2}^{{\text{V}}}\) O4 \(({\text{L}}_{1}^{ - })_{2}^{{\centerdot - }}\)] (I -)和[\({\text{V}}_{2}^{{\text{V}}}\) O4 \(({\text{L}}_{2}^{ - })_{2}^{{\centerdot - }}\)] (II -)型偶氮阴离子自由基偶联钒氧(V)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Coordination Chemistry
Russian Journal of Coordination Chemistry 化学-无机化学与核化学
CiteScore
2.40
自引率
15.80%
发文量
85
审稿时长
7.2 months
期刊介绍: Russian Journal of Coordination Chemistry is a journal that publishes reviews, original papers, and short communications on all aspects of theoretical and experimental coordination chemistry. Modern coordination chemistry is an interdisciplinary science that makes a bridge between inorganic, organic, physical, analytical, and biological chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信