On a non-uniform \(\alpha \)-robust IMEX-L1 mixed FEM for time-fractional PIDEs

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Lok Pati Tripathi, Aditi Tomar, Amiya K. Pani
{"title":"On a non-uniform \\(\\alpha \\)-robust IMEX-L1 mixed FEM for time-fractional PIDEs","authors":"Lok Pati Tripathi,&nbsp;Aditi Tomar,&nbsp;Amiya K. Pani","doi":"10.1007/s10444-025-10221-3","DOIUrl":null,"url":null,"abstract":"<div><p>A non-uniform implicit-explicit L1 mixed finite element method (IMEX-L1-MFEM) is investigated for a class of time-fractional partial integro-differential equations (PIDEs) with space-time-dependent coefficients and non-self-adjoint elliptic part. The proposed fully discrete method combines an IMEX-L1 method on a graded mesh in the temporal variable with a mixed finite element method in spatial variables. The focus of the study is to analyze stability results and to establish optimal error estimates, up to a logarithmic factor, for both the solution and the flux in <span>\\(L^2\\)</span>-norm when the initial data <span>\\(u_0\\in H_0^1(\\Omega )\\cap H^2(\\Omega )\\)</span>. Additionally, an error estimate in <span>\\(L^\\infty \\)</span>-norm is derived for 2D problems. All the derived estimates and bounds in this article remain valid as <span>\\(\\alpha \\rightarrow 1^{-}\\)</span>, where <span>\\(\\alpha \\)</span> is the order of the Caputo fractional derivative. Finally, the results of several numerical experiments conducted at the end of this paper are confirming our theoretical findings.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10221-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A non-uniform implicit-explicit L1 mixed finite element method (IMEX-L1-MFEM) is investigated for a class of time-fractional partial integro-differential equations (PIDEs) with space-time-dependent coefficients and non-self-adjoint elliptic part. The proposed fully discrete method combines an IMEX-L1 method on a graded mesh in the temporal variable with a mixed finite element method in spatial variables. The focus of the study is to analyze stability results and to establish optimal error estimates, up to a logarithmic factor, for both the solution and the flux in \(L^2\)-norm when the initial data \(u_0\in H_0^1(\Omega )\cap H^2(\Omega )\). Additionally, an error estimate in \(L^\infty \)-norm is derived for 2D problems. All the derived estimates and bounds in this article remain valid as \(\alpha \rightarrow 1^{-}\), where \(\alpha \) is the order of the Caputo fractional derivative. Finally, the results of several numerical experiments conducted at the end of this paper are confirming our theoretical findings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信