Experimental and theoretical study on the natural corrosion inhibitory properties of 3-Oxocostusic acid in a 1.0 M HNO3 solution

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mahmoud A. Al-Qudah, Tareq T. Bataineh, Abbas I. Alakhras, Ghassab M. Al-Mazaideh
{"title":"Experimental and theoretical study on the natural corrosion inhibitory properties of 3-Oxocostusic acid in a 1.0 M HNO3 solution","authors":"Mahmoud A. Al-Qudah,&nbsp;Tareq T. Bataineh,&nbsp;Abbas I. Alakhras,&nbsp;Ghassab M. Al-Mazaideh","doi":"10.1007/s00339-025-08307-2","DOIUrl":null,"url":null,"abstract":"<div><p>Weight-loss measurements and electrochemical techniques (potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)) were used to evaluate the inhibitory effectof 3-Oxocostusic acid (OA) compound on the corrosion of copper in 1.0 M nitric acid. For the highest inhibitor concentration tested here the inhibition efficiency reached 95.6% after 4 h of immersion at 45˚C. The results demonstrated that 3-Oxocostusic acid is a effective green inhibitor green inhibitor, and the inhibition efficiency increasing with both OA concentration and with increasing temperature. Notably, copper dissolution decreased with rising temperature in the presence of OA. The inhibitor adsorption on the copper surface followed the Langmuir adsorption isotherm on the surface of copper, with a high regression coefficient value. The entropy (ΔS<sup>#</sup>) and enthalpy (ΔH<sup>#</sup>) of activation were calculated and analyzed. The thermodynamic adsorption free energy (ΔG<sup>o</sup><sub>ads</sub>) value indicated that both physical and chemical adsorption of 3-Oxocostusic acid molecule on copper surface. Electrochemical polarization studies revealed that 3-Oxocostusic acid acts as mixed type inhibitor. EIS measurements exhibited one capacitive loop indicating that the corrosion reaction is controlled by the charge transfer process. The findings confirmed that copper was effectively protected against corrosion in acidic environments by 3-Oxocostusic acid. The experimental results and quantum chemical calculations provided strong evidence supporting the effectiveness of the OA compound as a copper inhibitor in acidic solutions. The consistency across multiple analytical methods validates the reliability of OA in protecting copper against corrosion in acidic environments.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08307-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Weight-loss measurements and electrochemical techniques (potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)) were used to evaluate the inhibitory effectof 3-Oxocostusic acid (OA) compound on the corrosion of copper in 1.0 M nitric acid. For the highest inhibitor concentration tested here the inhibition efficiency reached 95.6% after 4 h of immersion at 45˚C. The results demonstrated that 3-Oxocostusic acid is a effective green inhibitor green inhibitor, and the inhibition efficiency increasing with both OA concentration and with increasing temperature. Notably, copper dissolution decreased with rising temperature in the presence of OA. The inhibitor adsorption on the copper surface followed the Langmuir adsorption isotherm on the surface of copper, with a high regression coefficient value. The entropy (ΔS#) and enthalpy (ΔH#) of activation were calculated and analyzed. The thermodynamic adsorption free energy (ΔGoads) value indicated that both physical and chemical adsorption of 3-Oxocostusic acid molecule on copper surface. Electrochemical polarization studies revealed that 3-Oxocostusic acid acts as mixed type inhibitor. EIS measurements exhibited one capacitive loop indicating that the corrosion reaction is controlled by the charge transfer process. The findings confirmed that copper was effectively protected against corrosion in acidic environments by 3-Oxocostusic acid. The experimental results and quantum chemical calculations provided strong evidence supporting the effectiveness of the OA compound as a copper inhibitor in acidic solutions. The consistency across multiple analytical methods validates the reliability of OA in protecting copper against corrosion in acidic environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信