Biogenic nanoparticle based adsorption for chromium contaminated wastewater treatment

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
S. K. Nath, R. R. Dash, G. Nath
{"title":"Biogenic nanoparticle based adsorption for chromium contaminated wastewater treatment","authors":"S. K. Nath,&nbsp;R. R. Dash,&nbsp;G. Nath","doi":"10.1007/s10450-025-00603-w","DOIUrl":null,"url":null,"abstract":"<div><p>The discharge of chromium-contaminated wastewater from industries such as ferrochrome plants and leather manufacturing poses a significant environmental challenge due to the toxic and carcinogenic properties of Chromium [Cr(VI)]. Nanoparticles have emerged as one of the most effective solutions for wastewater treatment due to their high surface area, enhanced reactivity, and ability to target specific contaminants. In recent years, their eco-friendly synthesis, scalability, and efficiency in removing heavy metals and other pollutants have made them vital in addressing environmental challenges, particularly in industrial wastewater management. Their unique properties make them indispensable in modern wastewater treatment technologies. This study explores the application of biogenically synthesized titanium dioxide (TiO₂) for removal of Cr(VI) from synthetic wastewater. Lemon grass leaf extracts has been used as potential precursor in synthesis of TiO₂ nanoparticles from readily available micro size particles of TiO<sub>2</sub> powder. The process was further enhanced by ultrasonic assistance, which promoted the formation of uniformly dispersed nanoparticles with high surface area, improving their adsorption. Experimental techniques, such as X-ray Diffraction, have been utilized to confirm the biogenic synthesis of TiO<sub>2</sub> nanoparticles, demonstrating a size reduction from 10 μm to 35.79 nm. The nanoparticles demonstrated excellent Cr(VI) removal efficiency, achieving 84.55% reduction under optimal conditions. Among the various adsorption isotherm models, the Freundlich model proved to be the best fit, with an R² value exceeding 0.997. This method not only leverages sustainable synthesis processes but also offers potential scalability for industrial applications in waste water treatment.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-025-00603-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The discharge of chromium-contaminated wastewater from industries such as ferrochrome plants and leather manufacturing poses a significant environmental challenge due to the toxic and carcinogenic properties of Chromium [Cr(VI)]. Nanoparticles have emerged as one of the most effective solutions for wastewater treatment due to their high surface area, enhanced reactivity, and ability to target specific contaminants. In recent years, their eco-friendly synthesis, scalability, and efficiency in removing heavy metals and other pollutants have made them vital in addressing environmental challenges, particularly in industrial wastewater management. Their unique properties make them indispensable in modern wastewater treatment technologies. This study explores the application of biogenically synthesized titanium dioxide (TiO₂) for removal of Cr(VI) from synthetic wastewater. Lemon grass leaf extracts has been used as potential precursor in synthesis of TiO₂ nanoparticles from readily available micro size particles of TiO2 powder. The process was further enhanced by ultrasonic assistance, which promoted the formation of uniformly dispersed nanoparticles with high surface area, improving their adsorption. Experimental techniques, such as X-ray Diffraction, have been utilized to confirm the biogenic synthesis of TiO2 nanoparticles, demonstrating a size reduction from 10 μm to 35.79 nm. The nanoparticles demonstrated excellent Cr(VI) removal efficiency, achieving 84.55% reduction under optimal conditions. Among the various adsorption isotherm models, the Freundlich model proved to be the best fit, with an R² value exceeding 0.997. This method not only leverages sustainable synthesis processes but also offers potential scalability for industrial applications in waste water treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信