A chemomechanical coupling model for diffusion and stress analysis in polymer-based anti-corrosion coatings

IF 4.4 2区 工程技术 Q1 MECHANICS
Liangji Ma , Bo Zhang , Yin Yao , Zhilong Peng , Dawei Li , Shaohua Chen
{"title":"A chemomechanical coupling model for diffusion and stress analysis in polymer-based anti-corrosion coatings","authors":"Liangji Ma ,&nbsp;Bo Zhang ,&nbsp;Yin Yao ,&nbsp;Zhilong Peng ,&nbsp;Dawei Li ,&nbsp;Shaohua Chen","doi":"10.1016/j.euromechsol.2025.105603","DOIUrl":null,"url":null,"abstract":"<div><div>The phenomenon of chemomechanical coupling significantly impacts the service performance and lifespan of organic anti-corrosion coatings. Due to differences in matrix materials, the chemomechanical coupling mechanism in organic anti-corrosion coatings is different from that in metal-based materials. How to accurately characterize the chemomechanical coupling behavior in organic anti-corrosion coatings has become an important issue. In this work, a new theoretical model of strong chemomechanical coupling is established for polymer-based anti-corrosion coatings, in which the stress-dependent chemical potential gradient is employed as the fundamental driving force for diffusion and the influence of stress on the diffusion coefficient is considered based on the concept of free volume theory. The model is further utilized to examine the distribution and evolution of the chemomechanical coupling field within a polymer-based anti-corrosion coating system under external loading. Compared with the analysis results of existing weak coupling models, it is found that strong chemomechanical coupling significantly affects the diffusion rate of substances, which in turn affects the concentration field and stress field within the coating. In addition, this model can also explain the experimental result that hydrostatic pressure diminishes the diffusion coefficient. The proposed strong coupling model should be significant in precisely analyzing the diffusion process and mechanical properties of materials or structures in chemomechanical coupling environments.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"111 ","pages":"Article 105603"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825000373","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The phenomenon of chemomechanical coupling significantly impacts the service performance and lifespan of organic anti-corrosion coatings. Due to differences in matrix materials, the chemomechanical coupling mechanism in organic anti-corrosion coatings is different from that in metal-based materials. How to accurately characterize the chemomechanical coupling behavior in organic anti-corrosion coatings has become an important issue. In this work, a new theoretical model of strong chemomechanical coupling is established for polymer-based anti-corrosion coatings, in which the stress-dependent chemical potential gradient is employed as the fundamental driving force for diffusion and the influence of stress on the diffusion coefficient is considered based on the concept of free volume theory. The model is further utilized to examine the distribution and evolution of the chemomechanical coupling field within a polymer-based anti-corrosion coating system under external loading. Compared with the analysis results of existing weak coupling models, it is found that strong chemomechanical coupling significantly affects the diffusion rate of substances, which in turn affects the concentration field and stress field within the coating. In addition, this model can also explain the experimental result that hydrostatic pressure diminishes the diffusion coefficient. The proposed strong coupling model should be significant in precisely analyzing the diffusion process and mechanical properties of materials or structures in chemomechanical coupling environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信