Python-derived 16α-Hydroxylated Bile Acid, Pythocholic Acid is a ligand for TGR5, not farnesoid X receptors and vitamin D receptors

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nicole Kiaei , Afsin Malik , Sydney O. Idahosa , Kevin K. Lee , Kaori Endo-Umeda , Makoto Makishima , Akira Kawamura , Sei Higuchi
{"title":"Python-derived 16α-Hydroxylated Bile Acid, Pythocholic Acid is a ligand for TGR5, not farnesoid X receptors and vitamin D receptors","authors":"Nicole Kiaei ,&nbsp;Afsin Malik ,&nbsp;Sydney O. Idahosa ,&nbsp;Kevin K. Lee ,&nbsp;Kaori Endo-Umeda ,&nbsp;Makoto Makishima ,&nbsp;Akira Kawamura ,&nbsp;Sei Higuchi","doi":"10.1016/j.bbrc.2025.151453","DOIUrl":null,"url":null,"abstract":"<div><div>Bile acids (BAs) are signaling molecules involved in energy expenditure, glucose homeostasis, and immune system regulation via activation of BA receptors, such as Takeda G-Protein-Coupled Receptor 5 (TGR5), Farnesoid X Receptor (FXR), and Vitamin D Receptor (VDR). The structure of BA, especially the hydroxyl group position, plays an important role in exerting its function. Previously, we reported that 16α-hydroxylated BA, also known as pythocholic acid (PCA), has beneficial effects on metabolic function and lipid metabolism in mammals. However, the molecular mechanism of PCA in mammals is yet to be explored because 16α-hydroxylated BA has not been seen in mammals. This study aims to investigate the binding interaction of PCA to human bile acid receptors, TGR5, FXR, and VDR, using a luciferase reporter assay. Luciferase reporter assay showed that PCA and tauro-conjugated-PCA (TPCA) activated TGR5, but did not activate FXR or VDR. Additionally, PCA and TPCA did not show an antagonistic effect on any of the BA receptors. TPCA treatment significantly decreased lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-α) expression in mouse peritoneal macrophages, and inhibition of TGR5 by SBI-115 canceled the anti-inflammatory effect of TPCA. Our data suggests that PCA and TPCA are ligands for mammalian TGR5 receptors.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"751 ","pages":"Article 151453"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25001676","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bile acids (BAs) are signaling molecules involved in energy expenditure, glucose homeostasis, and immune system regulation via activation of BA receptors, such as Takeda G-Protein-Coupled Receptor 5 (TGR5), Farnesoid X Receptor (FXR), and Vitamin D Receptor (VDR). The structure of BA, especially the hydroxyl group position, plays an important role in exerting its function. Previously, we reported that 16α-hydroxylated BA, also known as pythocholic acid (PCA), has beneficial effects on metabolic function and lipid metabolism in mammals. However, the molecular mechanism of PCA in mammals is yet to be explored because 16α-hydroxylated BA has not been seen in mammals. This study aims to investigate the binding interaction of PCA to human bile acid receptors, TGR5, FXR, and VDR, using a luciferase reporter assay. Luciferase reporter assay showed that PCA and tauro-conjugated-PCA (TPCA) activated TGR5, but did not activate FXR or VDR. Additionally, PCA and TPCA did not show an antagonistic effect on any of the BA receptors. TPCA treatment significantly decreased lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-α) expression in mouse peritoneal macrophages, and inhibition of TGR5 by SBI-115 canceled the anti-inflammatory effect of TPCA. Our data suggests that PCA and TPCA are ligands for mammalian TGR5 receptors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信