Biogenic silver nanoparticles produced by Trichoderma reesei inhibit SARS-CoV-2 infection, reduce lung viral load and ameliorate acute pulmonary inflammation

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Marcus V.M.V. Amaral , Cláudia B. Carraro , Amanda C.C. Antoniêto , Mariana N. Costa , Thais F.C. Fraga-Silva , Ualter G. Cipriano , Rodrigo P.F. Abuná , Tamara S. Rodrigues , Ronaldo B. Martins , Andreia M. Luzenti , Glaucia R. Caruso , Priscyla D. Marcato , Vania L.D. Bonato , Dario S. Zamboni , Bergman M. Ribeiro , Sônia N. Báo , Joao S. da Silva , Flávio P. Veras , Roberto N. Silva
{"title":"Biogenic silver nanoparticles produced by Trichoderma reesei inhibit SARS-CoV-2 infection, reduce lung viral load and ameliorate acute pulmonary inflammation","authors":"Marcus V.M.V. Amaral ,&nbsp;Cláudia B. Carraro ,&nbsp;Amanda C.C. Antoniêto ,&nbsp;Mariana N. Costa ,&nbsp;Thais F.C. Fraga-Silva ,&nbsp;Ualter G. Cipriano ,&nbsp;Rodrigo P.F. Abuná ,&nbsp;Tamara S. Rodrigues ,&nbsp;Ronaldo B. Martins ,&nbsp;Andreia M. Luzenti ,&nbsp;Glaucia R. Caruso ,&nbsp;Priscyla D. Marcato ,&nbsp;Vania L.D. Bonato ,&nbsp;Dario S. Zamboni ,&nbsp;Bergman M. Ribeiro ,&nbsp;Sônia N. Báo ,&nbsp;Joao S. da Silva ,&nbsp;Flávio P. Veras ,&nbsp;Roberto N. Silva","doi":"10.1016/j.crbiot.2025.100277","DOIUrl":null,"url":null,"abstract":"<div><div>The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), posed a significant global health challenge and still demands efforts to develop new therapies. In this study, we investigated the potential of biogenic silver nanoparticles (AgNPs) synthesized by the fungus <em>Trichoderma reesei</em> to combat SARS-CoV-2 infection. In silico studies showed that AgNPs, ranging from 7 nm to 50 nm, have high affinity for spike protein from different variant of SARS-CoV-2. Our findings show that AgNPs effectively do not affect cell viability in Calu-3 cells, inhibit viral infection in Vero-E6 cells and progression of infection <em>in vitro</em>. Additionally, AgNPs impair caspase-1 activation, lactate dehydrogenase release and IL-1β production by human monocytes. Moreover, our study reveals that AgNPs treatment significantly alleviated acute lung injury induced by SARS-CoV-2 infection in Syrian hamsters. This suggests that AgNPs treatment effectively impairs viral replication or propagation within lung tissue, highlighting its potential as an antiviral agent against SARS-CoV-2. Further investigations are warranted to elucidate the underlying mechanisms of action of AgNPs and to assess their safety and efficacy in clinical settings. Nonetheless, our findings offer promising insights into the development of novel therapeutic strategies for combating COVID-19 and reducing its associated morbidity and mortality.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"9 ","pages":"Article 100277"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262825000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), posed a significant global health challenge and still demands efforts to develop new therapies. In this study, we investigated the potential of biogenic silver nanoparticles (AgNPs) synthesized by the fungus Trichoderma reesei to combat SARS-CoV-2 infection. In silico studies showed that AgNPs, ranging from 7 nm to 50 nm, have high affinity for spike protein from different variant of SARS-CoV-2. Our findings show that AgNPs effectively do not affect cell viability in Calu-3 cells, inhibit viral infection in Vero-E6 cells and progression of infection in vitro. Additionally, AgNPs impair caspase-1 activation, lactate dehydrogenase release and IL-1β production by human monocytes. Moreover, our study reveals that AgNPs treatment significantly alleviated acute lung injury induced by SARS-CoV-2 infection in Syrian hamsters. This suggests that AgNPs treatment effectively impairs viral replication or propagation within lung tissue, highlighting its potential as an antiviral agent against SARS-CoV-2. Further investigations are warranted to elucidate the underlying mechanisms of action of AgNPs and to assess their safety and efficacy in clinical settings. Nonetheless, our findings offer promising insights into the development of novel therapeutic strategies for combating COVID-19 and reducing its associated morbidity and mortality.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Biotechnology
Current Research in Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.70
自引率
3.60%
发文量
50
审稿时长
38 days
期刊介绍: Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines. Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信