Hanluo Li , Meiling Wu , Zhuanzhuan Ma , Xue Wang , Junwei Fan , Kanghong Hu , Yanhong Wei , Chenguang Yao , Jinbiao Liu , Sini Kang , Xu Kang , Jianglan Yuan
{"title":"Porcine plasma protein cold-set hydrogel crosslinked by genipin and the immunomodulatory, proliferation promoting and scar-remodeling in wound healing","authors":"Hanluo Li , Meiling Wu , Zhuanzhuan Ma , Xue Wang , Junwei Fan , Kanghong Hu , Yanhong Wei , Chenguang Yao , Jinbiao Liu , Sini Kang , Xu Kang , Jianglan Yuan","doi":"10.1016/j.bioadv.2025.214216","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing the critical need for biocompatible and multifunctional wound dressings for chronic and non-healing wounds, cold-set hydrogel using natural biomacromolecules are potential candidates. This study developed a novel cold-set hydrogel of porcine plasma protein (PPP) through genipin (GP) as crosslinker and glucono delta-lactone (GDL) as acidifier. GP promoted hardness, springiness, water holding capacity (WHC) and modulus in a dose-dependent manner in the presence of GDL, and significantly enhanced microstructural density, integrity and anti-degradation, critical as wound dressing, achieving the optimal performance at 0.15 % GP and 0.2 % GDL. Subsequently, biocompatibility assessments revealed that the optimum PPP gel was low cytotoxicity and could support cell migration and proliferation, reduce apoptosis with dose-effect relationship of the filler PPP. Meanwhile, <em>in vivo</em> skin wound healing model indicated the efficacy in accelerating wound healing, reducing inflammation, and promoting tissue remodeling without excessive scar formation. These effects are attributed to the ability of PPP in the hydrogel to modulate local inflammatory responses, enhance angiogenesis, and balance extracellular matrix remodeling processes. In conclusion, this pioneering work establishes PPP cold-set hydrogels as promising candidates for advanced wound care solutions, combining the benefits of natural protein-based biomaterials with innovative crosslinking strategies to meet urgent clinical needs in regenerative medicine.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"170 ","pages":"Article 214216"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825000433","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Addressing the critical need for biocompatible and multifunctional wound dressings for chronic and non-healing wounds, cold-set hydrogel using natural biomacromolecules are potential candidates. This study developed a novel cold-set hydrogel of porcine plasma protein (PPP) through genipin (GP) as crosslinker and glucono delta-lactone (GDL) as acidifier. GP promoted hardness, springiness, water holding capacity (WHC) and modulus in a dose-dependent manner in the presence of GDL, and significantly enhanced microstructural density, integrity and anti-degradation, critical as wound dressing, achieving the optimal performance at 0.15 % GP and 0.2 % GDL. Subsequently, biocompatibility assessments revealed that the optimum PPP gel was low cytotoxicity and could support cell migration and proliferation, reduce apoptosis with dose-effect relationship of the filler PPP. Meanwhile, in vivo skin wound healing model indicated the efficacy in accelerating wound healing, reducing inflammation, and promoting tissue remodeling without excessive scar formation. These effects are attributed to the ability of PPP in the hydrogel to modulate local inflammatory responses, enhance angiogenesis, and balance extracellular matrix remodeling processes. In conclusion, this pioneering work establishes PPP cold-set hydrogels as promising candidates for advanced wound care solutions, combining the benefits of natural protein-based biomaterials with innovative crosslinking strategies to meet urgent clinical needs in regenerative medicine.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!