Nicole L. Coots, Daniel E. Jasso-Selles, Kali L. Swichtenberg, Serena G. Aguilar, LeAnn Nguyen, Piper G. Sidles, Cindy Woo, Harrison M. Smith, Bailey J. Bresee, Amir A. Abboud, Tala Abd Al Rahman, Ritika Anand, Sergio R. Avalle, Anuvi Batra, Mackenzie A. Brown, Hilary Camacho Ruelas, Alfanarely Fajardo Chavez, Campbell N. Gallegos, Amalia Grambs, D. Armaan Hernández, Gillian H. Gile
{"title":"The protist symbionts of Reticulitermes tibialis: Unexpected diversity enables a new taxonomic framework","authors":"Nicole L. Coots, Daniel E. Jasso-Selles, Kali L. Swichtenberg, Serena G. Aguilar, LeAnn Nguyen, Piper G. Sidles, Cindy Woo, Harrison M. Smith, Bailey J. Bresee, Amir A. Abboud, Tala Abd Al Rahman, Ritika Anand, Sergio R. Avalle, Anuvi Batra, Mackenzie A. Brown, Hilary Camacho Ruelas, Alfanarely Fajardo Chavez, Campbell N. Gallegos, Amalia Grambs, D. Armaan Hernández, Gillian H. Gile","doi":"10.1016/j.protis.2025.126087","DOIUrl":null,"url":null,"abstract":"<div><div>Wood-feeding termites harbor specialized protists in their hindguts in a classic nutritional mutualism. The protists are vertically inherited, which has generated a broad-scale pattern of codiversification over ∼150 million years, but there are many incongruences due to lineage-specific loss and transfer of symbionts. Despite the evolutionary and economic importance of this symbiosis, the symbiont communities of most termite species are incompletely characterized or entirely unstudied. Here, we have investigated the protist symbiont community of <em>Reticulitermes tibialis,</em> using single-cell PCR to link morphology to 18S rRNA gene sequences. The protists belong to at least 41 species in 3 major lineages within Metamonada: Spirotrichonymphida, Pyrsonymphidae, and <em>Trichonympha</em>. The Spirotrichonymphida symbionts belong to 6 genera, including <em>Pseudospironympha</em>, which has not been found in <em>Reticulitermes</em> until now, and <em>Dexiohelix</em>, a new genus. Pyrsonymphidae traditionally include just <em>Pyrsonympha</em> and <em>Dinenympha</em>, but our morphology-linked 18S phylogeny indicates that both genera are polyphyletic. We accordingly restrict the definitions of <em>Pyrsonympha</em> and <em>Dinenympha</em> to the clades that include their type species, and we propose 5 new genera to accommodate the remaining clades. Short-read 18S amplicon sequencing revealed considerable variation in community composition across <em>R. tibialis</em> colonies in Arizona, suggestive of a symbiont metacommunity. Symbiont species varied in their prevalence across colonies, with a core set of about 12 highly prevalent symbiont species, 11 species with intermediate prevalence, and 18 rare species. This pattern contrasts with the traditional paradigm of consistent symbiont community composition across colonies of a termite species.</div></div>","PeriodicalId":20781,"journal":{"name":"Protist","volume":"176 ","pages":"Article 126087"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protist","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434461025000033","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Wood-feeding termites harbor specialized protists in their hindguts in a classic nutritional mutualism. The protists are vertically inherited, which has generated a broad-scale pattern of codiversification over ∼150 million years, but there are many incongruences due to lineage-specific loss and transfer of symbionts. Despite the evolutionary and economic importance of this symbiosis, the symbiont communities of most termite species are incompletely characterized or entirely unstudied. Here, we have investigated the protist symbiont community of Reticulitermes tibialis, using single-cell PCR to link morphology to 18S rRNA gene sequences. The protists belong to at least 41 species in 3 major lineages within Metamonada: Spirotrichonymphida, Pyrsonymphidae, and Trichonympha. The Spirotrichonymphida symbionts belong to 6 genera, including Pseudospironympha, which has not been found in Reticulitermes until now, and Dexiohelix, a new genus. Pyrsonymphidae traditionally include just Pyrsonympha and Dinenympha, but our morphology-linked 18S phylogeny indicates that both genera are polyphyletic. We accordingly restrict the definitions of Pyrsonympha and Dinenympha to the clades that include their type species, and we propose 5 new genera to accommodate the remaining clades. Short-read 18S amplicon sequencing revealed considerable variation in community composition across R. tibialis colonies in Arizona, suggestive of a symbiont metacommunity. Symbiont species varied in their prevalence across colonies, with a core set of about 12 highly prevalent symbiont species, 11 species with intermediate prevalence, and 18 rare species. This pattern contrasts with the traditional paradigm of consistent symbiont community composition across colonies of a termite species.
期刊介绍:
Protist is the international forum for reporting substantial and novel findings in any area of research on protists. The criteria for acceptance of manuscripts are scientific excellence, significance, and interest for a broad readership. Suitable subject areas include: molecular, cell and developmental biology, biochemistry, systematics and phylogeny, and ecology of protists. Both autotrophic and heterotrophic protists as well as parasites are covered. The journal publishes original papers, short historical perspectives and includes a news and views section.