Energy-efficient driving for distributed electric vehicles considering wheel loss energy: A distributed strategy based on multi-agent architecture

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
Yufu Liang, Wanzhong Zhao, Jinwei Wu, Kunhao Xu, Xiaochuan Zhou, Zhongkai Luan, Chunyan Wang
{"title":"Energy-efficient driving for distributed electric vehicles considering wheel loss energy: A distributed strategy based on multi-agent architecture","authors":"Yufu Liang,&nbsp;Wanzhong Zhao,&nbsp;Jinwei Wu,&nbsp;Kunhao Xu,&nbsp;Xiaochuan Zhou,&nbsp;Zhongkai Luan,&nbsp;Chunyan Wang","doi":"10.1016/j.apenergy.2025.125462","DOIUrl":null,"url":null,"abstract":"<div><div>Distributed electric vehicles equipped with four-wheel independent drive (4WID) and four-wheel independent steering (4WIS) systems offer trajectory tracking performance and energy-saving potential. However, the challenge remains in how to coordinate the steering angles and torques of the four wheels to balance both tracking accuracy and energy efficiency. Distributed control, which trades design complexity for control flexibility, is able to differentiate the control of different wheels according to the vehicle's driving state to reduce wheel loss energy, providing a new perspective for improving the energy-efficient potential of vehicles. In this paper, a physical-data-driven distributed predictive control strategy is proposed within a distributed control framework, and multi-agent vehicle and wheel energy consumption models are constructed. To address the increased energy consumption and reduced trajectory tracking accuracy caused by model mismatches, a novel physical-data-driven predictive model-building approach is introduced, with real-time updates facilitated by the Givens Rotation and forgetting mechanism. The weights of the optimization objective function are dynamically adjusted according to changes in the wheel states to achieve comprehensive optimization of trajectory tracking and energy efficiency. Experimental results demonstrate that the proposed control strategy significantly reduces driving energy consumption while improving trajectory tracking performance. Under the CLTC-P cycle condition, energy loss is reduced by 11.5 %; under S-curve and double lane change steering conditions, energy losses are reduced by 15.0 % and 16.6 %, respectively. These results fully validate the effectiveness and superiority of the proposed strategy in practical applications.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"384 ","pages":"Article 125462"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925001928","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed electric vehicles equipped with four-wheel independent drive (4WID) and four-wheel independent steering (4WIS) systems offer trajectory tracking performance and energy-saving potential. However, the challenge remains in how to coordinate the steering angles and torques of the four wheels to balance both tracking accuracy and energy efficiency. Distributed control, which trades design complexity for control flexibility, is able to differentiate the control of different wheels according to the vehicle's driving state to reduce wheel loss energy, providing a new perspective for improving the energy-efficient potential of vehicles. In this paper, a physical-data-driven distributed predictive control strategy is proposed within a distributed control framework, and multi-agent vehicle and wheel energy consumption models are constructed. To address the increased energy consumption and reduced trajectory tracking accuracy caused by model mismatches, a novel physical-data-driven predictive model-building approach is introduced, with real-time updates facilitated by the Givens Rotation and forgetting mechanism. The weights of the optimization objective function are dynamically adjusted according to changes in the wheel states to achieve comprehensive optimization of trajectory tracking and energy efficiency. Experimental results demonstrate that the proposed control strategy significantly reduces driving energy consumption while improving trajectory tracking performance. Under the CLTC-P cycle condition, energy loss is reduced by 11.5 %; under S-curve and double lane change steering conditions, energy losses are reduced by 15.0 % and 16.6 %, respectively. These results fully validate the effectiveness and superiority of the proposed strategy in practical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信