The experimental and numerical studies on the effects of the operating conditions on the performance of breastshot waterwheel

IF 6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Agato Agato , Deendarlianto Deendarlianto , Indarto Indarto , Alfeus Sunarso
{"title":"The experimental and numerical studies on the effects of the operating conditions on the performance of breastshot waterwheel","authors":"Agato Agato ,&nbsp;Deendarlianto Deendarlianto ,&nbsp;Indarto Indarto ,&nbsp;Alfeus Sunarso","doi":"10.1016/j.asej.2025.103292","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of the present work was to investigate the effects of operating conditions on the flow behaviors and the generated power produced by breastshot waterwheels both experimentally and numerically. The experiments were carried out using a breastshot water wheel with the diameter of 500 mm, the width of 140 mm and the number of blades of 14. The wheel was installed on a channel with the weir head of 250 mm, the headrace length of 100 mm, and the water flow rate of 0.014 m<sup>3</sup>/sec. In the numerical simulation, the hydraulic channel was considered to be laterally symmetric, therefore only half of the section was taken into account. The simulation of free surface movement was calculated using the volume of fluid (VOF) method, and the static and rotating region interface was treated using the sliding mesh interface (SMI). The calculated torque and power, as well as the flow patterns ​​under various operating conditions are in a good agreement with those of the experiments. The visualization of the flow shows that the lower the rotational speed of the wheel, the greater the volume of water hitting the wheel blades, and the greater the torque produced by the water wheel. It was also confirmed that the periodical change of torque depends on the rotational speed and the number of wheel blades, and relates to the periodical change of the pressure on the blade surfaces. Furthermore, it is shown that the forward pressure that generates a positive torque mainly applies on a blade at a specific location. Under the decrease of rotational speed, the location of maximum forward pressure moves from the downstream blade to the upstream blade.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 3","pages":"Article 103292"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925000334","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the present work was to investigate the effects of operating conditions on the flow behaviors and the generated power produced by breastshot waterwheels both experimentally and numerically. The experiments were carried out using a breastshot water wheel with the diameter of 500 mm, the width of 140 mm and the number of blades of 14. The wheel was installed on a channel with the weir head of 250 mm, the headrace length of 100 mm, and the water flow rate of 0.014 m3/sec. In the numerical simulation, the hydraulic channel was considered to be laterally symmetric, therefore only half of the section was taken into account. The simulation of free surface movement was calculated using the volume of fluid (VOF) method, and the static and rotating region interface was treated using the sliding mesh interface (SMI). The calculated torque and power, as well as the flow patterns ​​under various operating conditions are in a good agreement with those of the experiments. The visualization of the flow shows that the lower the rotational speed of the wheel, the greater the volume of water hitting the wheel blades, and the greater the torque produced by the water wheel. It was also confirmed that the periodical change of torque depends on the rotational speed and the number of wheel blades, and relates to the periodical change of the pressure on the blade surfaces. Furthermore, it is shown that the forward pressure that generates a positive torque mainly applies on a blade at a specific location. Under the decrease of rotational speed, the location of maximum forward pressure moves from the downstream blade to the upstream blade.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ain Shams Engineering Journal
Ain Shams Engineering Journal Engineering-General Engineering
CiteScore
10.80
自引率
13.30%
发文量
441
审稿时长
49 weeks
期刊介绍: in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance. Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信