Programmable CMOS current signal generator for simultaneous multi-sine bioimpedance analysis

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Israel Corbacho, Juan M. Carrillo, José L. Ausín, Miguel Á. Domínguez, Raquel Pérez-Aloe, J. Francisco Duque-Carrillo
{"title":"Programmable CMOS current signal generator for simultaneous multi-sine bioimpedance analysis","authors":"Israel Corbacho,&nbsp;Juan M. Carrillo,&nbsp;José L. Ausín,&nbsp;Miguel Á. Domínguez,&nbsp;Raquel Pérez-Aloe,&nbsp;J. Francisco Duque-Carrillo","doi":"10.1016/j.aeue.2025.155701","DOIUrl":null,"url":null,"abstract":"<div><div>A fully-differential CMOS current signal generator, suitable for on-chip simultaneous multi-sine bioimpedance spectroscopy, is presented. The proposal is based on generating sinusoidal voltage signals, which are converted into currents and summed in a multiple-input current driver. The oscillators rely on a transconductor-capacitor (<span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>-<em>C</em>) structure, which allows low-power and wide-frequency-range features. Each input channel of the current driver is a linearized voltage-to-current converter, to deliver a highly-linear multi-sine excitation current. A common-mode feedback (CMFB) network is used to set the DC component of the output voltage, also leading to a high output impedance. The output current can be digitally programmed by means of a 3-bit control signal, which allows measuring a wide range of impedances under test. The circuit has been designed and fabricated in 180 nm CMOS technology to operate with a 1.8-V supply. The output resistance of the current driver has been found to be above 1 M<span><math><mi>Ω</mi></math></span> at low frequencies for the maximum output current of <span><math><mrow><mn>62</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>μ</mi><mi>A</mi></mrow></math></span> and it is kept higher than approximately 20 k<span><math><mi>Ω</mi></math></span> for a frequency equal to 1 MHz and the same output current level. The output current can be tuned in the range [9.7,62.5] <span><math><mi>μ</mi></math></span>A ensuring that the individual frequency components present a THD lower than <span><math><mo>−</mo></math></span>40 dB.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"192 ","pages":"Article 155701"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841125000421","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A fully-differential CMOS current signal generator, suitable for on-chip simultaneous multi-sine bioimpedance spectroscopy, is presented. The proposal is based on generating sinusoidal voltage signals, which are converted into currents and summed in a multiple-input current driver. The oscillators rely on a transconductor-capacitor (Gm-C) structure, which allows low-power and wide-frequency-range features. Each input channel of the current driver is a linearized voltage-to-current converter, to deliver a highly-linear multi-sine excitation current. A common-mode feedback (CMFB) network is used to set the DC component of the output voltage, also leading to a high output impedance. The output current can be digitally programmed by means of a 3-bit control signal, which allows measuring a wide range of impedances under test. The circuit has been designed and fabricated in 180 nm CMOS technology to operate with a 1.8-V supply. The output resistance of the current driver has been found to be above 1 MΩ at low frequencies for the maximum output current of 62.5μA and it is kept higher than approximately 20 kΩ for a frequency equal to 1 MHz and the same output current level. The output current can be tuned in the range [9.7,62.5] μA ensuring that the individual frequency components present a THD lower than 40 dB.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
18.80%
发文量
292
审稿时长
4.9 months
期刊介绍: AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including: signal and system theory, digital signal processing network theory and circuit design information theory, communication theory and techniques, modulation, source and channel coding switching theory and techniques, communication protocols optical communications microwave theory and techniques, radar, sonar antennas, wave propagation AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信