Stride potential of CZGS/CZGSe quantum dot solar cell influence of nano-structured all-around-barriers

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Smruti Ranjan Mohanty , Chandrasekar Palanisamy , Sudarsan Sahoo , Soumyaranjan Routray
{"title":"Stride potential of CZGS/CZGSe quantum dot solar cell influence of nano-structured all-around-barriers","authors":"Smruti Ranjan Mohanty ,&nbsp;Chandrasekar Palanisamy ,&nbsp;Sudarsan Sahoo ,&nbsp;Soumyaranjan Routray","doi":"10.1016/j.micrna.2025.208083","DOIUrl":null,"url":null,"abstract":"<div><div>The Use of Quantum Dots (QDs) in solar cells are emerging because of their eco-friendly, cheaper and better electrical and optical characteristics. Kesterite based Quantum dot solar cells(QDSC) face critical challenges towards the width and thickness of QDs layer to enhance photo absorption and overall efficiency. An efficient engineering of all around barrier QD solar cell (AABQD) utilizing Nano structures may improve the overall performance in QDSC. The goal is to explore the performance of QDSC by varying QD layer (CZGS/CZGSe) thickness from 5 nm to 15 nm and width of the QDs (CZGSe) varies from 50 nm to 150 nm. A thin barrier layer (CZGS) of 5 nm is inserted between each QD layers that coupled with electrical and optical performance. The behavior of carrier quantization changes when QDs are surrounded by barriers from all sides. The confinement and escape of the carrier are more pronounced compared to normal QD structure. The remarkable efficiency of 18.45% and Voc of 1.103v are obtained in AAQBD Solar cell as compared to efficiency 15.3% and Voc of 1.075V in traditional QDs Solar cell.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"200 ","pages":"Article 208083"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The Use of Quantum Dots (QDs) in solar cells are emerging because of their eco-friendly, cheaper and better electrical and optical characteristics. Kesterite based Quantum dot solar cells(QDSC) face critical challenges towards the width and thickness of QDs layer to enhance photo absorption and overall efficiency. An efficient engineering of all around barrier QD solar cell (AABQD) utilizing Nano structures may improve the overall performance in QDSC. The goal is to explore the performance of QDSC by varying QD layer (CZGS/CZGSe) thickness from 5 nm to 15 nm and width of the QDs (CZGSe) varies from 50 nm to 150 nm. A thin barrier layer (CZGS) of 5 nm is inserted between each QD layers that coupled with electrical and optical performance. The behavior of carrier quantization changes when QDs are surrounded by barriers from all sides. The confinement and escape of the carrier are more pronounced compared to normal QD structure. The remarkable efficiency of 18.45% and Voc of 1.103v are obtained in AAQBD Solar cell as compared to efficiency 15.3% and Voc of 1.075V in traditional QDs Solar cell.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信