Exploring the electrochemical behaviour of digestive enzymes at a liquid|liquid micro-interface array

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shaheda Zannah, Damien W.M. Arrigan
{"title":"Exploring the electrochemical behaviour of digestive enzymes at a liquid|liquid micro-interface array","authors":"Shaheda Zannah,&nbsp;Damien W.M. Arrigan","doi":"10.1016/j.bioelechem.2025.108911","DOIUrl":null,"url":null,"abstract":"<div><div>Trypsin and pepsin are proteolytic enzymes secreted by the digestive system to digest proteins. Here, we examine the electrochemical behaviour and detection of trypsin and pepsin at a liquid/liquid (L|L) micro-interface array. For both proteins, aqueous phase of 10 mM hydrochloric acid was the only electrolyte solution in which they were electroactive. Neither protein was detected below 30 μM by cyclic voltammetry (CV) but stripping voltammetry following adsorption (AdSV) enabled the detection of sub-micromolar concentrations of both proteins. Although pepsin was electroactive at the micro-interface array in aqueous phase of 10 mM HCl, its behaviour was ill-defined and unsuitable for characterization by CV. It was found that pepsin easily blocked the micro-interfaces, as seen by greatly hampered ion transfer voltammetry of tetrapropylammonium ion (TPrA<sup>+</sup>) whereas trypsin only slightly impeded TPrA<sup>+</sup> transfer. This highlights the dissimilarity between pepsin and trypsin. These results illustrate the rich viability of electrochemistry at L|L micro-interface arrays as a tool to explore the behaviour and detection of biological macromolecules.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"164 ","pages":"Article 108911"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000143","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Trypsin and pepsin are proteolytic enzymes secreted by the digestive system to digest proteins. Here, we examine the electrochemical behaviour and detection of trypsin and pepsin at a liquid/liquid (L|L) micro-interface array. For both proteins, aqueous phase of 10 mM hydrochloric acid was the only electrolyte solution in which they were electroactive. Neither protein was detected below 30 μM by cyclic voltammetry (CV) but stripping voltammetry following adsorption (AdSV) enabled the detection of sub-micromolar concentrations of both proteins. Although pepsin was electroactive at the micro-interface array in aqueous phase of 10 mM HCl, its behaviour was ill-defined and unsuitable for characterization by CV. It was found that pepsin easily blocked the micro-interfaces, as seen by greatly hampered ion transfer voltammetry of tetrapropylammonium ion (TPrA+) whereas trypsin only slightly impeded TPrA+ transfer. This highlights the dissimilarity between pepsin and trypsin. These results illustrate the rich viability of electrochemistry at L|L micro-interface arrays as a tool to explore the behaviour and detection of biological macromolecules.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信