Chitosan based surface modulation of core-shell nanoparticles for oral delivery of exenatide via balancing mucus penetration and cellular uptake

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Yiyao Li , Huixian Tian , Han Zeng , Yu Zhang , Tian Yin , Haibing He , Jingxin Gou , Xing Tang
{"title":"Chitosan based surface modulation of core-shell nanoparticles for oral delivery of exenatide via balancing mucus penetration and cellular uptake","authors":"Yiyao Li ,&nbsp;Huixian Tian ,&nbsp;Han Zeng ,&nbsp;Yu Zhang ,&nbsp;Tian Yin ,&nbsp;Haibing He ,&nbsp;Jingxin Gou ,&nbsp;Xing Tang","doi":"10.1016/j.ijpharm.2025.125319","DOIUrl":null,"url":null,"abstract":"<div><div>Oral delivery of peptide and protein drugs (PDs) is hindered by the impermeable intestinal mucosa, which consists of both the mucus layer and the epithelium. Therefore, double-layer (mucus layer and epithelium) overcoming nanocarriers need to be designed to enhance the transporting efficiency of PDs. However, the requirements for surface properties to penetrate these two barriers are quite distinct. In this study, nanoparticles (NPs) with balanced mucus permeation and cellular uptake were developed by modulating surface properties to improve the endocytosis efficiency of exenatide (EXT). The EXT-loaded ovolecithin (Lipoid E 80)/dextran/bovine serum albumin (EDB) NPs, solidified by sodium trimetaphosphate (STMP), were prepared through double emulsification combined with interfacial crosslinking solidification. The EDB NPs were then coated with cationic polyelectrolyte chitosan (CS) shell to form CS-EDB NPs, which exhibited 83.50 ± 0.44 % of encapsulation efficiency (EE), a particle size of approximately 277.0 ± 3.96 nm, and a Zeta potential of −16.2 ± 0.71 mV. Compared to uncoated EDB NPs, CS-EDB NPs showed a 1.1-fold reduction in mucus penetration (P<sub>app</sub>), as measured using the Transwell mucus-penetrating model. However, CS-EDB NPs demonstrated a 2.15-fold and 1.77-fold increase in cellular uptake and transepithelial transport efficiency across a Caco-2/E-12 co-culture model, respectively, primarily driven by energy-dependent endocytosis and partially mediated by macropinocytosis. Furthermore, CS-EDB NPs achieved 13.29 % of pharmacological bioavailability and effectively regulated blood glucose, serum lipid levels, and improved islet function upon long-term administration. In conclusion, the core–shell structured CS-EDB NPs successfully protected against the harsh gastrointestinal tract (GIT) environment, providing improved endocytosis efficiency by slightly compromising mucus penetration while significantly enhancing cellular uptake, offering a promising approach for the oral delivery of PDs.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"672 ","pages":"Article 125319"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325001553","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Oral delivery of peptide and protein drugs (PDs) is hindered by the impermeable intestinal mucosa, which consists of both the mucus layer and the epithelium. Therefore, double-layer (mucus layer and epithelium) overcoming nanocarriers need to be designed to enhance the transporting efficiency of PDs. However, the requirements for surface properties to penetrate these two barriers are quite distinct. In this study, nanoparticles (NPs) with balanced mucus permeation and cellular uptake were developed by modulating surface properties to improve the endocytosis efficiency of exenatide (EXT). The EXT-loaded ovolecithin (Lipoid E 80)/dextran/bovine serum albumin (EDB) NPs, solidified by sodium trimetaphosphate (STMP), were prepared through double emulsification combined with interfacial crosslinking solidification. The EDB NPs were then coated with cationic polyelectrolyte chitosan (CS) shell to form CS-EDB NPs, which exhibited 83.50 ± 0.44 % of encapsulation efficiency (EE), a particle size of approximately 277.0 ± 3.96 nm, and a Zeta potential of −16.2 ± 0.71 mV. Compared to uncoated EDB NPs, CS-EDB NPs showed a 1.1-fold reduction in mucus penetration (Papp), as measured using the Transwell mucus-penetrating model. However, CS-EDB NPs demonstrated a 2.15-fold and 1.77-fold increase in cellular uptake and transepithelial transport efficiency across a Caco-2/E-12 co-culture model, respectively, primarily driven by energy-dependent endocytosis and partially mediated by macropinocytosis. Furthermore, CS-EDB NPs achieved 13.29 % of pharmacological bioavailability and effectively regulated blood glucose, serum lipid levels, and improved islet function upon long-term administration. In conclusion, the core–shell structured CS-EDB NPs successfully protected against the harsh gastrointestinal tract (GIT) environment, providing improved endocytosis efficiency by slightly compromising mucus penetration while significantly enhancing cellular uptake, offering a promising approach for the oral delivery of PDs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信