Marimuthu Rajendiran, Martin Papke, Christian Müller* and Ramaswamy Murugavel*,
{"title":"3H-1,2,3,4-Triazaphosphole Constructs Derived from Sterically Encumbered Aryl Polyazides: Synthesis, Structure, and Reactivity","authors":"Marimuthu Rajendiran, Martin Papke, Christian Müller* and Ramaswamy Murugavel*, ","doi":"10.1021/acs.organomet.4c0031810.1021/acs.organomet.4c00318","DOIUrl":null,"url":null,"abstract":"<p >Starting from sterically hindered aniline derivatives containing one or more Ar–NH<sub>2</sub> moieties, a series of aryl-azides have been synthesized. The reactions of these mono-, di-, and triaryl azides, ArN<sub>3</sub>, (ArN<sub>3</sub>)<sub>2</sub>, and (ArN<sub>3</sub>)<sub>3</sub> with phosphaalkynes R–C≡P (R = adamantyl or 2,4,6-tri-<i>t</i>-butylphenyl) yielded mono-, bis-, and tris-triazaphosphole assemblies. All the products are formed under ambient conditions under prolonged stirring. Representative triazaphospholes can be selectively alkylated with Meerwein’s reagent on the most nucleophilic nitrogen atom to yield stable 1,2,3,4-triazaphospholenium cations. These compounds were characterized by multinuclear NMR spectroscopy (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, <sup>19</sup>F, and <sup>11</sup>B), mass spectrometry, and photophysical studies. Molecular structures of representative compounds have also been determined by single crystal X-ray diffraction. Additional density functional theory (DFT), TD-DFT, and NICS calculations were performed and the result were found to be in agreement with our experimental findings.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"44 3","pages":"502–519 502–519"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organometallics","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.organomet.4c00318","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Starting from sterically hindered aniline derivatives containing one or more Ar–NH2 moieties, a series of aryl-azides have been synthesized. The reactions of these mono-, di-, and triaryl azides, ArN3, (ArN3)2, and (ArN3)3 with phosphaalkynes R–C≡P (R = adamantyl or 2,4,6-tri-t-butylphenyl) yielded mono-, bis-, and tris-triazaphosphole assemblies. All the products are formed under ambient conditions under prolonged stirring. Representative triazaphospholes can be selectively alkylated with Meerwein’s reagent on the most nucleophilic nitrogen atom to yield stable 1,2,3,4-triazaphospholenium cations. These compounds were characterized by multinuclear NMR spectroscopy (1H, 13C, 31P, 19F, and 11B), mass spectrometry, and photophysical studies. Molecular structures of representative compounds have also been determined by single crystal X-ray diffraction. Additional density functional theory (DFT), TD-DFT, and NICS calculations were performed and the result were found to be in agreement with our experimental findings.
期刊介绍:
Organometallics is the flagship journal of organometallic chemistry and records progress in one of the most active fields of science, bridging organic and inorganic chemistry. The journal publishes Articles, Communications, Reviews, and Tutorials (instructional overviews) that depict research on the synthesis, structure, bonding, chemical reactivity, and reaction mechanisms for a variety of applications, including catalyst design and catalytic processes; main-group, transition-metal, and lanthanide and actinide metal chemistry; synthetic aspects of polymer science and materials science; and bioorganometallic chemistry.