Data assimilation of forest status using Sentinel-2 data and a process-based model

IF 5.6 1区 农林科学 Q1 AGRONOMY
Francesco Minunno , Jukka Miettinen , Xianglin Tian , Tuomas Häme , Jonathan Holder , Kristiina Koivu , Annikki Mäkelä
{"title":"Data assimilation of forest status using Sentinel-2 data and a process-based model","authors":"Francesco Minunno ,&nbsp;Jukka Miettinen ,&nbsp;Xianglin Tian ,&nbsp;Tuomas Häme ,&nbsp;Jonathan Holder ,&nbsp;Kristiina Koivu ,&nbsp;Annikki Mäkelä","doi":"10.1016/j.agrformet.2025.110436","DOIUrl":null,"url":null,"abstract":"<div><div>Spatially explicit information of forest status is important for obtaining more accurate predictions of C balance. Spatially explicit predictions of forest characteristics at high resolution can be obtained by Earth Observations (EO), but the accuracy of satellite-based predictions may vary significantly. Modern computational techniques, such as data assimilation (DA), allow us to improve the accuracy of predictions considering measurement uncertainties. The main objective of this work was to develop two DA frameworks that combine repeated satellite measurements (Sentinel-2) and process-based forest model predictions. For the study three tiles of 100 × 100 km<sup>2</sup> were considered, in boreal forests. One framework was used to predict forest structural variables and tree species, while the other was used to quantify the site fertility class. The reliability of the frameworks was tested using field measurements. By means of DA we combined model and satellite-based predictions improving the reliability and robustness of forest monitoring. The DA frameworks reduced the uncertainty associated with forest structural variables and mitigated the effects of biased Earth Observation predictions when errors occurred. For one tile, Sentinel-2 prediction for 2019 (s2019) of stem diameter (D) and height (H) was biased, but the errors were reduced by the DA estimation (DA2019). The root mean squared errors were reduced from 5.8 cm (s2019) to 4.5 cm (DA2019) and from 5.1 m (s2019) to 3.3 m (DA2019) for D (sd = 4.33 cm) and H (sd = 3.43 m), respectively. For the site fertility class estimation DA was less effective, because forest growth rate is low in boreal environments; long term analysis might be more informative. We showed here the potential of the DA framework implemented using medium resolution remote sensing data and a process-based forest model. Further testing of the frameworks using more RS-data acquisitions is desirable and the DA process would benefit if the error of satellite-based predictions were reduced.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"363 ","pages":"Article 110436"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192325000565","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Spatially explicit information of forest status is important for obtaining more accurate predictions of C balance. Spatially explicit predictions of forest characteristics at high resolution can be obtained by Earth Observations (EO), but the accuracy of satellite-based predictions may vary significantly. Modern computational techniques, such as data assimilation (DA), allow us to improve the accuracy of predictions considering measurement uncertainties. The main objective of this work was to develop two DA frameworks that combine repeated satellite measurements (Sentinel-2) and process-based forest model predictions. For the study three tiles of 100 × 100 km2 were considered, in boreal forests. One framework was used to predict forest structural variables and tree species, while the other was used to quantify the site fertility class. The reliability of the frameworks was tested using field measurements. By means of DA we combined model and satellite-based predictions improving the reliability and robustness of forest monitoring. The DA frameworks reduced the uncertainty associated with forest structural variables and mitigated the effects of biased Earth Observation predictions when errors occurred. For one tile, Sentinel-2 prediction for 2019 (s2019) of stem diameter (D) and height (H) was biased, but the errors were reduced by the DA estimation (DA2019). The root mean squared errors were reduced from 5.8 cm (s2019) to 4.5 cm (DA2019) and from 5.1 m (s2019) to 3.3 m (DA2019) for D (sd = 4.33 cm) and H (sd = 3.43 m), respectively. For the site fertility class estimation DA was less effective, because forest growth rate is low in boreal environments; long term analysis might be more informative. We showed here the potential of the DA framework implemented using medium resolution remote sensing data and a process-based forest model. Further testing of the frameworks using more RS-data acquisitions is desirable and the DA process would benefit if the error of satellite-based predictions were reduced.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.70%
发文量
415
审稿时长
69 days
期刊介绍: Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published. Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信