Preparation and surface structure study of novel asymmetric Janus carbon dots

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yingdong Zhang, Lin Wang, Zhiwei Yang, Dongmei Yue
{"title":"Preparation and surface structure study of novel asymmetric Janus carbon dots","authors":"Yingdong Zhang, Lin Wang, Zhiwei Yang, Dongmei Yue","doi":"10.1016/j.apsusc.2025.162655","DOIUrl":null,"url":null,"abstract":"Janus particles, heterogeneous bifacial particles, have gained significant interest in materials science and chemical engineering. Nanoscale fabrication of these particles poses notable challenges. Although mature techniques exist for creating Janus particles from inorganic and polymeric materials, similar advancements in carbon dots (CDs) remain unreported. This paper introduces a novel approach using a liquid–liquid interface method to specifically modify CDs suspended at the biphasic interface, resulting in the formation of carbon dots with a unique Janus-type surface distribution (J-CDs). The surface structure was analyzed using transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, elemental analysis and <sup>13</sup>C NMR spectroscopy. By correlating their fluorescence properties with time-dependent density functional theory (TDDFT) calculations, the relationship between the fluorescent characteristics of J-CDs and their asymmetric Janus surface structures was established, further confirming their unique Janus configuration. Water contact angle tests showed that J-CDs exhibit hydrophilic and hydrophobic properties that differ distinctly from those of traditional amphiphilic CDs when suspended in various solvents and dried on a silicon substrate, underscoring their novel structure. Enhanced surface properties were demonstrated through the stabilization of Pickering emulsions and fabrication of polystyrene microspheres, showcasing the potential of J-CDs to modulate surface characteristics for diverse applications.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"12 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.162655","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Janus particles, heterogeneous bifacial particles, have gained significant interest in materials science and chemical engineering. Nanoscale fabrication of these particles poses notable challenges. Although mature techniques exist for creating Janus particles from inorganic and polymeric materials, similar advancements in carbon dots (CDs) remain unreported. This paper introduces a novel approach using a liquid–liquid interface method to specifically modify CDs suspended at the biphasic interface, resulting in the formation of carbon dots with a unique Janus-type surface distribution (J-CDs). The surface structure was analyzed using transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, elemental analysis and 13C NMR spectroscopy. By correlating their fluorescence properties with time-dependent density functional theory (TDDFT) calculations, the relationship between the fluorescent characteristics of J-CDs and their asymmetric Janus surface structures was established, further confirming their unique Janus configuration. Water contact angle tests showed that J-CDs exhibit hydrophilic and hydrophobic properties that differ distinctly from those of traditional amphiphilic CDs when suspended in various solvents and dried on a silicon substrate, underscoring their novel structure. Enhanced surface properties were demonstrated through the stabilization of Pickering emulsions and fabrication of polystyrene microspheres, showcasing the potential of J-CDs to modulate surface characteristics for diverse applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信