In-Situ monitoring via alternation of electroconductivity for solar-driven water purification based on thermo-reversible pore size of hydrogel

IF 8 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Tae Min Kim , Akhmad Irhas Robby , Gibaek Lee , Byung Chan Lee , Benny Ryplida , Sung Young Park
{"title":"In-Situ monitoring via alternation of electroconductivity for solar-driven water purification based on thermo-reversible pore size of hydrogel","authors":"Tae Min Kim ,&nbsp;Akhmad Irhas Robby ,&nbsp;Gibaek Lee ,&nbsp;Byung Chan Lee ,&nbsp;Benny Ryplida ,&nbsp;Sung Young Park","doi":"10.1016/j.snb.2025.137413","DOIUrl":null,"url":null,"abstract":"<div><div>A thermo-reversible electroconductive hydrogel composed of carbon dots (CDs)/TiO<sub>2</sub> fluorinated silica facilitates solar-driven water purification through pore size modulation, governed by a transition between hydrophobic and hydrophilic states. This transition is monitored by changes in electrical resistance. The inclusion of the photocatalyst TiO<sub>2</sub> in the CDs enhances hydrophilicity under visible light irradiation, enabling a reversible shift in surface affinity. This shift influences the volume transition of the CD-hydrogel within temperature ranges of 35 °C–55 °C and 0 °C–25 °C, corresponding to upper and lower critical solution temperatures, respectively. The hydrogel exhibits a temperature increase of 52.4 °C and a swelling ratio of 223 % upon solar light exposure. Water purification is achieved through water absorption and release cycles involving immersion and irradiation for 100 min, leading to a mass reduction of 2.435 kg/m². Moreover, bacterial contamination in water is purified and monitored through a measurable change in electrical resistance from 12.5 to 27.6 kΩ. These resistance variations enable real-time observation of water purification using electrochemical analysis and smartphone connectivity.</div></div>","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"431 ","pages":"Article 137413"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925400525001881","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A thermo-reversible electroconductive hydrogel composed of carbon dots (CDs)/TiO2 fluorinated silica facilitates solar-driven water purification through pore size modulation, governed by a transition between hydrophobic and hydrophilic states. This transition is monitored by changes in electrical resistance. The inclusion of the photocatalyst TiO2 in the CDs enhances hydrophilicity under visible light irradiation, enabling a reversible shift in surface affinity. This shift influences the volume transition of the CD-hydrogel within temperature ranges of 35 °C–55 °C and 0 °C–25 °C, corresponding to upper and lower critical solution temperatures, respectively. The hydrogel exhibits a temperature increase of 52.4 °C and a swelling ratio of 223 % upon solar light exposure. Water purification is achieved through water absorption and release cycles involving immersion and irradiation for 100 min, leading to a mass reduction of 2.435 kg/m². Moreover, bacterial contamination in water is purified and monitored through a measurable change in electrical resistance from 12.5 to 27.6 kΩ. These resistance variations enable real-time observation of water purification using electrochemical analysis and smartphone connectivity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors and Actuators B: Chemical
Sensors and Actuators B: Chemical 工程技术-电化学
CiteScore
14.60
自引率
11.90%
发文量
1776
审稿时长
3.2 months
期刊介绍: Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信