Bojing Guo, Dingcong Cui, Qingfeng Wu, Yuemin Ma, Daixiu Wei, Kumara L. S. R, Yashan Zhang, Chenbo Xu, Zhijun Wang, Junjie Li, Xin Lin, Jincheng Wang, Xun-li Wang, Feng He
{"title":"Segregation-dislocation self-organized structures ductilize a work-hardened medium entropy alloy","authors":"Bojing Guo, Dingcong Cui, Qingfeng Wu, Yuemin Ma, Daixiu Wei, Kumara L. S. R, Yashan Zhang, Chenbo Xu, Zhijun Wang, Junjie Li, Xin Lin, Jincheng Wang, Xun-li Wang, Feng He","doi":"10.1038/s41467-025-56710-3","DOIUrl":null,"url":null,"abstract":"<p>Dislocations are the intrinsic origin of crystal plasticity. However, initial high-density dislocations in work-hardened materials are commonly asserted to be detrimental to ductility according to textbook strengthening theory. Inspired by the self-organized critical states of non-equilibrium complex systems in nature, we explored the mechanical response of an additively manufactured medium entropy alloy with segregation-dislocation self-organized structures (SD-SOS). We show here that when initial dislocations are in the form of SD-SOS, the textbook theory that dislocation hardening inevitably sacrifices ductility can be overturned. Our results reveal that the SD-SOS, in addition to providing dislocation sources by emitting dislocations and stacking faults, also dynamically interacts with gliding dislocations to generate sustainable Lomer-Cottrell locks and jogs for dislocation storage. The effective dislocation multiplication and storage capabilities lead to the continuous refinement of planar slip bands, resulting in high ductility in the work-hardened alloy produced by additive manufacturing. These findings set a precedent for optimizing the mechanical behavior of alloys via tuning dislocation configurations.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"79 3 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56710-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dislocations are the intrinsic origin of crystal plasticity. However, initial high-density dislocations in work-hardened materials are commonly asserted to be detrimental to ductility according to textbook strengthening theory. Inspired by the self-organized critical states of non-equilibrium complex systems in nature, we explored the mechanical response of an additively manufactured medium entropy alloy with segregation-dislocation self-organized structures (SD-SOS). We show here that when initial dislocations are in the form of SD-SOS, the textbook theory that dislocation hardening inevitably sacrifices ductility can be overturned. Our results reveal that the SD-SOS, in addition to providing dislocation sources by emitting dislocations and stacking faults, also dynamically interacts with gliding dislocations to generate sustainable Lomer-Cottrell locks and jogs for dislocation storage. The effective dislocation multiplication and storage capabilities lead to the continuous refinement of planar slip bands, resulting in high ductility in the work-hardened alloy produced by additive manufacturing. These findings set a precedent for optimizing the mechanical behavior of alloys via tuning dislocation configurations.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.