Tianyi Wu, Sina Kheiri, Riley J. Hickman, Huachen Tao, Tony C. Wu, Zhi-Bo Yang, Xin Ge, Wei Zhang, Milad Abolhasani, Kun Liu, Alan Aspuru-Guzik, Eugenia Kumacheva
{"title":"Self-driving lab for the photochemical synthesis of plasmonic nanoparticles with targeted structural and optical properties","authors":"Tianyi Wu, Sina Kheiri, Riley J. Hickman, Huachen Tao, Tony C. Wu, Zhi-Bo Yang, Xin Ge, Wei Zhang, Milad Abolhasani, Kun Liu, Alan Aspuru-Guzik, Eugenia Kumacheva","doi":"10.1038/s41467-025-56788-9","DOIUrl":null,"url":null,"abstract":"<p>Many applications of plasmonic nanoparticles require precise control of their optical properties that are governed by nanoparticle dimensions, shape, morphology and composition. Finding reaction conditions for the synthesis of nanoparticles with targeted characteristics is a time-consuming and resource-intensive trial-and-error process, however closed-loop nanoparticle synthesis enables the accelerated exploration of large chemical spaces without human intervention. Here, we introduce the Autonomous Fluidic Identification and Optimization Nanochemistry (AFION) self-driving lab that integrates a microfluidic reactor, in-flow spectroscopic nanoparticle characterization, and machine learning for the exploration and optimization of the multidimensional chemical space for the photochemical synthesis of plasmonic nanoparticles. By targeting spectroscopic nanoparticle properties, the AFION lab identifies reaction conditions for the synthesis of different types of nanoparticles with designated shapes, morphologies, and compositions. Data analysis provides insight into the role of reaction conditions for the synthesis of the targeted nanoparticle type. This work shows that the AFION lab is an effective exploration platform for on-demand synthesis of plasmonic nanoparticles.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"143 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56788-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Many applications of plasmonic nanoparticles require precise control of their optical properties that are governed by nanoparticle dimensions, shape, morphology and composition. Finding reaction conditions for the synthesis of nanoparticles with targeted characteristics is a time-consuming and resource-intensive trial-and-error process, however closed-loop nanoparticle synthesis enables the accelerated exploration of large chemical spaces without human intervention. Here, we introduce the Autonomous Fluidic Identification and Optimization Nanochemistry (AFION) self-driving lab that integrates a microfluidic reactor, in-flow spectroscopic nanoparticle characterization, and machine learning for the exploration and optimization of the multidimensional chemical space for the photochemical synthesis of plasmonic nanoparticles. By targeting spectroscopic nanoparticle properties, the AFION lab identifies reaction conditions for the synthesis of different types of nanoparticles with designated shapes, morphologies, and compositions. Data analysis provides insight into the role of reaction conditions for the synthesis of the targeted nanoparticle type. This work shows that the AFION lab is an effective exploration platform for on-demand synthesis of plasmonic nanoparticles.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.