Unraveling the Essential Role of Consecutive Protonation Steps in Photocatalytic CO2 Reduction when Using Au Nanorods in a MOF

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tianyi Huang, Jianyu Han, Zhongqiu Li, Yixin Hong, Xiaofei Gu, Yafeng Wu, Prof. Yuanjian Zhang, Prof. Songqin Liu
{"title":"Unraveling the Essential Role of Consecutive Protonation Steps in Photocatalytic CO2 Reduction when Using Au Nanorods in a MOF","authors":"Tianyi Huang,&nbsp;Jianyu Han,&nbsp;Zhongqiu Li,&nbsp;Yixin Hong,&nbsp;Xiaofei Gu,&nbsp;Yafeng Wu,&nbsp;Prof. Yuanjian Zhang,&nbsp;Prof. Songqin Liu","doi":"10.1002/anie.202500269","DOIUrl":null,"url":null,"abstract":"<p>The proton-coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO<sub>2</sub> fixation chemistry. However, difficulties in capturing the transient intermediates generated during the protonation process impede the clarification of the fundamental mechanism behind photocatalytic CO<sub>2</sub> reduction. Herein, we report a general killing two birds with one stone strategy by spatially confining Au nanorods within a typical porphyrin metal–organic framework (MOF). Interestingly, 2.4-fold increase in CH<sub>4</sub>/CO selectivity and 12-fold increase in CH<sub>4</sub> production were observed after loading of Au nanorods, indicative of a strengthened protonation process in the photocatalytic CO<sub>2</sub> reduction. More importantly, the plasmonic effect from Au nanorods simultaneously boosted the in situ Raman signals of *CO and *CHO intermediates on the Au−O−Zr active site. The evident protonation process was further clarified in a control H/D kinetic isotope experiment. This work highlights the significance of successive protonation steps for boosting CH<sub>4</sub> production in photocatalytic CO<sub>2</sub> reduction.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 16","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202500269","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The proton-coupled electron transfer process (PCET) plays a crucial role in both natural and artificial photosynthesis, including CO2 fixation chemistry. However, difficulties in capturing the transient intermediates generated during the protonation process impede the clarification of the fundamental mechanism behind photocatalytic CO2 reduction. Herein, we report a general killing two birds with one stone strategy by spatially confining Au nanorods within a typical porphyrin metal–organic framework (MOF). Interestingly, 2.4-fold increase in CH4/CO selectivity and 12-fold increase in CH4 production were observed after loading of Au nanorods, indicative of a strengthened protonation process in the photocatalytic CO2 reduction. More importantly, the plasmonic effect from Au nanorods simultaneously boosted the in situ Raman signals of *CO and *CHO intermediates on the Au−O−Zr active site. The evident protonation process was further clarified in a control H/D kinetic isotope experiment. This work highlights the significance of successive protonation steps for boosting CH4 production in photocatalytic CO2 reduction.

Abstract Image

在MOF中使用金纳米棒时,揭示连续质子化步骤在光催化CO2还原中的重要作用
质子耦合电子转移过程(PCET)在自然和人工光合作用中都起着至关重要的作用,其中包括CO2固定化学。然而,捕获质子化过程中产生的瞬态中间体的困难阻碍了光催化CO2还原背后的基本机制的阐明。在此,我们报告了一种通过将金纳米棒空间限制在典型卟啉MOF内的一石两鸟策略(Au@PCN-222)。有趣的是,负载Au纳米棒后,CH4/CO选择性增加了2.4倍,CH4产量增加了12倍,这表明光催化CO2还原过程中的质子化过程得到加强。更重要的是,Au纳米棒的等离子体效应同时增强了Au- o - zr活性位点上*CO和*CHO中间体的原位拉曼信号。在对照H/D动力学同位素实验中进一步阐明了明显的质子化过程。这项工作强调了在光催化CO2还原过程中连续质子化步骤对提高CH4产量的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信