Hu Li , Sha Zhao , Meng-Ke Gao , Yanyan Zhou , Bo Xu , Le-Yang Yang , Xiao-Ru Yang , Jian-Qiang Su
{"title":"Experimental evidence for viral impact on microbial community, nitrification, and denitrification in an agriculture soil","authors":"Hu Li , Sha Zhao , Meng-Ke Gao , Yanyan Zhou , Bo Xu , Le-Yang Yang , Xiao-Ru Yang , Jian-Qiang Su","doi":"10.1016/j.jhazmat.2025.137532","DOIUrl":null,"url":null,"abstract":"<div><div>Viruses are ubiquitous, and their potential impacts on biogeochemical cycles in soil have largely been inferred from correlation evidence and virome studies. Manure has been demonstrated to affect nitrogen cycle by altering soil nutrients and microbial communities. However, the direct impacts of viruses derived from manure on microbial community, nitrification, and denitrification remained exclusive. In this study, concentrated viral extracts obtained from manure were added into an agricultural soil in varying dosages: a one-time addition of 10-fold viruses or a weekly addition of 1-fold viruses for ten weeks. The results showed that both viral extracts and manure significantly changed the microbial community compositions and structures. The effect of manure on microbial diversity was concentration-dependent, differing from the viral impact on microbial diversity in soil. Deterministic processes predominated in the assembly of microbial communities in both viral and manure treatments, with an increased contribution of deterministic processes observed after these treatments. Additionally, a high concentration (10-fold) of viruses enhanced N<sub>2</sub>O production and reduction in soil. In the control treatment, N<sub>2</sub>O production was driven by bacterial denitrification, fungal denitrification, and chemo-denitrification. However, bacteria became the dominant driver of N<sub>2</sub>O production in both virus and manure treatments. Overall, experimental evidence for viral impacts on the composition and assembly of microbial community, as well as on nitrification and denitrification processes, was provided through a 70-day microcosm experiment. These findings highlight the importance of viruses in regulating the distribution and functioning of microbes in terrestrial ecosystems.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"489 ","pages":"Article 137532"},"PeriodicalIF":11.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425004443","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Viruses are ubiquitous, and their potential impacts on biogeochemical cycles in soil have largely been inferred from correlation evidence and virome studies. Manure has been demonstrated to affect nitrogen cycle by altering soil nutrients and microbial communities. However, the direct impacts of viruses derived from manure on microbial community, nitrification, and denitrification remained exclusive. In this study, concentrated viral extracts obtained from manure were added into an agricultural soil in varying dosages: a one-time addition of 10-fold viruses or a weekly addition of 1-fold viruses for ten weeks. The results showed that both viral extracts and manure significantly changed the microbial community compositions and structures. The effect of manure on microbial diversity was concentration-dependent, differing from the viral impact on microbial diversity in soil. Deterministic processes predominated in the assembly of microbial communities in both viral and manure treatments, with an increased contribution of deterministic processes observed after these treatments. Additionally, a high concentration (10-fold) of viruses enhanced N2O production and reduction in soil. In the control treatment, N2O production was driven by bacterial denitrification, fungal denitrification, and chemo-denitrification. However, bacteria became the dominant driver of N2O production in both virus and manure treatments. Overall, experimental evidence for viral impacts on the composition and assembly of microbial community, as well as on nitrification and denitrification processes, was provided through a 70-day microcosm experiment. These findings highlight the importance of viruses in regulating the distribution and functioning of microbes in terrestrial ecosystems.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.