Reinforcement learning-based trajectory tracking optimal control of unmanned surface vehicles in narrow water areas.

Ziping Wei, Jialu Du
{"title":"Reinforcement learning-based trajectory tracking optimal control of unmanned surface vehicles in narrow water areas.","authors":"Ziping Wei, Jialu Du","doi":"10.1016/j.isatra.2025.01.045","DOIUrl":null,"url":null,"abstract":"<p><p>For unmanned surface vehicles (USVs) navigating in narrow water areas in the presence of unknown dynamics and ocean environmental disturbances, this paper develops a reinforcement learning (RL)-based optimal control scheme for the trajectory tracking of USVs under motion state constraints. A nonlinear map is introduced to transform constrained motion state errors into bounded transformed errors, and then the motion state-constrained trajectory tracking problem of USVs is equivalently transformed into a boundedness problem of the transformed errors. Furthermore, an actor-critic framework is developed by utilizing adaptive neural networks (NNs). Within the actor-critic framework, a novel weight update law is designed for the critic NN by combining the gradient descent approach and the concurrent learning technology, thereby relaxing the persistent excitation condition required for adaptive critic NN weight updates. Subsequently, a disturbance compensator is designed and combined with the actor-critic framework to learn the trajectory tracking optimal control law for USVs in the presence of unknown dynamics and disturbances. Finally, theoretical analyses prove that the developed control scheme guarantees the boundedness of all signals in the USV closed-loop trajectory tracking control system, and simulation results show that the developed control scheme can make USVs track the desired trajectory in narrow water areas while reducing the energy consumption by approximately 14.6 % compared with an existing controller.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.01.045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For unmanned surface vehicles (USVs) navigating in narrow water areas in the presence of unknown dynamics and ocean environmental disturbances, this paper develops a reinforcement learning (RL)-based optimal control scheme for the trajectory tracking of USVs under motion state constraints. A nonlinear map is introduced to transform constrained motion state errors into bounded transformed errors, and then the motion state-constrained trajectory tracking problem of USVs is equivalently transformed into a boundedness problem of the transformed errors. Furthermore, an actor-critic framework is developed by utilizing adaptive neural networks (NNs). Within the actor-critic framework, a novel weight update law is designed for the critic NN by combining the gradient descent approach and the concurrent learning technology, thereby relaxing the persistent excitation condition required for adaptive critic NN weight updates. Subsequently, a disturbance compensator is designed and combined with the actor-critic framework to learn the trajectory tracking optimal control law for USVs in the presence of unknown dynamics and disturbances. Finally, theoretical analyses prove that the developed control scheme guarantees the boundedness of all signals in the USV closed-loop trajectory tracking control system, and simulation results show that the developed control scheme can make USVs track the desired trajectory in narrow water areas while reducing the energy consumption by approximately 14.6 % compared with an existing controller.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信