Neuroendocrine control of synaptic transmission by PHAC-1 in C. elegans.

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Aikaterini Stratigi, Miguel Soler-García, Mia Krout, Shikha Shukla, Mario De Bono, Janet E Richmond, Patrick Laurent
{"title":"Neuroendocrine control of synaptic transmission by PHAC-1 in <i>C. elegans.</i>","authors":"Aikaterini Stratigi, Miguel Soler-García, Mia Krout, Shikha Shukla, Mario De Bono, Janet E Richmond, Patrick Laurent","doi":"10.1523/JNEUROSCI.1767-23.2024","DOIUrl":null,"url":null,"abstract":"<p><p>A dynamic interplay between fast synaptic signals and slower neuromodulatory signals controls the excitatory-inhibitory (E/I) balance within neuronal circuits. The mechanisms by which neuropeptide signaling is regulated to maintain E/I balance remain uncertain. We designed a genetic screen to isolate genes involved in the peptidergic maintenance of the E/I balance in the <i>C. elegans</i> motor circuit. This screen identified the <i>C. elegans</i> orthologs of the presynaptic phosphoprotein Synapsin (<i>snn-1</i>) and the Protein Phosphatase 1 (PP1) regulatory subunit PHACTR1 (<i>phac-1</i>). We demonstrate that both <i>phac-1</i> and <i>snn-1</i> alter the motor behavior of <i>C. elegans</i>, and genetic interactions suggest that SNN-1 contributes to PP1-PHAC-1 holoenzyme signaling. <i>De novo</i> variants of human PHACTR1, associated with early-onset epilepsies (DEE70), when expressed <i>in C. elegans</i> resulted in constitutive PP1-PHAC-1 holoenzyme activity. Unregulated PP1-PHAC-1 signaling alters the Synapsin and Actin cytoskeleton and increases neuropeptide release by cholinergic motor neurons, which secondarily affects the presynaptic vesicle cycle. Together, these results clarify the dominant mechanisms of action of the DEE70 alleles and suggest that altered neuropeptide release may alter E/I balance in DEE70.<b>Significance Statement</b> Alterations of the excitatory-inhibitory (E/I) balance within neuronal circuits contribute to seizures. Early-onset epilepsies are associated with 4 variants of human PHACTR1 (called DEE70). In a genetic screen designed to isolate genes involved in the maintenance of the E/I balance by peptidergic neuromodulators, we identified the <i>C. elegans</i> orthologs of PHACTR1 and of Synapsin. When introduced in <i>C. elegans,</i> the DEE70-associated variants reduced the E/I balance in motor circuits. Our results suggest that DEE70 variants induce the constitutive activity of an holophosphatase formed by PHACTR1. The constitutive holophosphatase signaling alters the Synapsin and Actin cytoskeleton and increases neuropeptide release which secondarily decreases E/I balance in circuits.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1767-23.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A dynamic interplay between fast synaptic signals and slower neuromodulatory signals controls the excitatory-inhibitory (E/I) balance within neuronal circuits. The mechanisms by which neuropeptide signaling is regulated to maintain E/I balance remain uncertain. We designed a genetic screen to isolate genes involved in the peptidergic maintenance of the E/I balance in the C. elegans motor circuit. This screen identified the C. elegans orthologs of the presynaptic phosphoprotein Synapsin (snn-1) and the Protein Phosphatase 1 (PP1) regulatory subunit PHACTR1 (phac-1). We demonstrate that both phac-1 and snn-1 alter the motor behavior of C. elegans, and genetic interactions suggest that SNN-1 contributes to PP1-PHAC-1 holoenzyme signaling. De novo variants of human PHACTR1, associated with early-onset epilepsies (DEE70), when expressed in C. elegans resulted in constitutive PP1-PHAC-1 holoenzyme activity. Unregulated PP1-PHAC-1 signaling alters the Synapsin and Actin cytoskeleton and increases neuropeptide release by cholinergic motor neurons, which secondarily affects the presynaptic vesicle cycle. Together, these results clarify the dominant mechanisms of action of the DEE70 alleles and suggest that altered neuropeptide release may alter E/I balance in DEE70.Significance Statement Alterations of the excitatory-inhibitory (E/I) balance within neuronal circuits contribute to seizures. Early-onset epilepsies are associated with 4 variants of human PHACTR1 (called DEE70). In a genetic screen designed to isolate genes involved in the maintenance of the E/I balance by peptidergic neuromodulators, we identified the C. elegans orthologs of PHACTR1 and of Synapsin. When introduced in C. elegans, the DEE70-associated variants reduced the E/I balance in motor circuits. Our results suggest that DEE70 variants induce the constitutive activity of an holophosphatase formed by PHACTR1. The constitutive holophosphatase signaling alters the Synapsin and Actin cytoskeleton and increases neuropeptide release which secondarily decreases E/I balance in circuits.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信