The Reduced Cortilymph Flow Path in the Short-Wave Region Allows Outer Hair Cells to Produce Focused Traveling-Wave Amplification.

IF 2.4 3区 医学 Q3 NEUROSCIENCES
John J Guinan, Nam Hyun Cho, Sunil Puria
{"title":"The Reduced Cortilymph Flow Path in the Short-Wave Region Allows Outer Hair Cells to Produce Focused Traveling-Wave Amplification.","authors":"John J Guinan, Nam Hyun Cho, Sunil Puria","doi":"10.1007/s10162-025-00976-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Recent measurements show organ-of-Corti (OoC) motions that do not fit the classic hypothesis that outer hair cells (OHCs) amplify by pushing on the basilar membrane (BM) through stiff Deiters cells. One particularly surprising motion is that far below the best frequency (BF), the transverse motion of the OHC bottom is much greater than BM or reticular lamina (RL) motions.</p><p><strong>Methods: </strong>We explore this with (1) data from seven gerbils showing that the ratio, Rohc, of transverse motions at the OHC top to the OHC bottom is small at low frequencies but large near BF and (2) a heuristic model for the impedances of structures in a transverse cut through the OoC (the TOoC model) that accounts for Rohc.</p><p><strong>Results: </strong>The key idea is that when OHCs cyclically squeeze/expand, they force fluid out/into the space surrounding the OHCs which changes the local OoC area. At each time instant, cortilymph flows longitudinally along the tunnels from where OHCs squeeze to where OHCs expand, which is one-half the traveling-wave wavelength, λ. The impedance seen by OHCs for forcing cortilymph out/into and along the tunnels is termed Z<sub>OUT</sub>. Assuming that Z<sub>OUT</sub> decreases as λ gets shorter, the model Rohc shows the same frequency pattern as Rohc measurements.</p><p><strong>Conclusion: </strong>Cyclic OHC forces produce OoC area changes consistent with those hypothesized to drive traveling-wave amplification. Z<sub>OUT</sub> variation with λ allows wide-band OHC motility to produce large OoC area changes and RL motions only near BF where λ is small, thereby producing narrow-band traveling-wave amplification. The model accounts for why, at low frequencies, the motion at the bottom of the OHCs is larger than BM motion. The model also explains why the OoC has longitudinal fluid spaces that connect to the fluid surrounding the OHCs.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"49-61"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861466/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jaro-Journal of the Association for Research in Otolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10162-025-00976-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Recent measurements show organ-of-Corti (OoC) motions that do not fit the classic hypothesis that outer hair cells (OHCs) amplify by pushing on the basilar membrane (BM) through stiff Deiters cells. One particularly surprising motion is that far below the best frequency (BF), the transverse motion of the OHC bottom is much greater than BM or reticular lamina (RL) motions.

Methods: We explore this with (1) data from seven gerbils showing that the ratio, Rohc, of transverse motions at the OHC top to the OHC bottom is small at low frequencies but large near BF and (2) a heuristic model for the impedances of structures in a transverse cut through the OoC (the TOoC model) that accounts for Rohc.

Results: The key idea is that when OHCs cyclically squeeze/expand, they force fluid out/into the space surrounding the OHCs which changes the local OoC area. At each time instant, cortilymph flows longitudinally along the tunnels from where OHCs squeeze to where OHCs expand, which is one-half the traveling-wave wavelength, λ. The impedance seen by OHCs for forcing cortilymph out/into and along the tunnels is termed ZOUT. Assuming that ZOUT decreases as λ gets shorter, the model Rohc shows the same frequency pattern as Rohc measurements.

Conclusion: Cyclic OHC forces produce OoC area changes consistent with those hypothesized to drive traveling-wave amplification. ZOUT variation with λ allows wide-band OHC motility to produce large OoC area changes and RL motions only near BF where λ is small, thereby producing narrow-band traveling-wave amplification. The model accounts for why, at low frequencies, the motion at the bottom of the OHCs is larger than BM motion. The model also explains why the OoC has longitudinal fluid spaces that connect to the fluid surrounding the OHCs.

在短波区减少皮质淋巴流动路径允许外毛细胞产生聚焦行波放大。
目的:最近的测量显示,器官- corti (OoC)运动不符合经典假设,即外毛细胞(ohc)通过坚硬的Deiters细胞推动基底膜(BM)而放大。一个特别令人惊讶的运动是,在远低于最佳频率(BF)的地方,OHC底部的横向运动远远大于BM或网状层(RL)运动。方法:我们通过(1)来自7只沙鼠的数据来探索这一点,数据显示,热层顶部与热层底部的横向运动比(Rohc)在低频时很小,但在BF附近很大;(2)通过OoC的横向切割结构阻抗的启发式模型(TOoC模型)可以解释Rohc。结果:关键思想是,当热碳循环挤压/膨胀时,它们迫使流体流出/进入热碳周围的空间,从而改变局部OoC面积。在每个时刻,皮质淋巴液沿着通道纵向流动,从热碳化合物挤压的地方流向热碳化合物扩张的地方,这是行波波长λ的一半。ohc所观察到的迫使皮质淋巴液进出和沿着隧道的阻抗称为ZOUT。假设ZOUT随着λ变短而减小,模型Rohc显示出与Rohc测量相同的频率模式。结论:循环热盐力引起的OoC面积变化与驱动行波放大的假设一致。ZOUT随λ的变化使得宽带热含量运动产生较大的OoC面积变化,而RL运动仅在λ较小的BF附近产生,从而产生窄带行波放大。该模型解释了为什么在低频时,OHCs底部的运动大于BM运动。该模型还解释了为什么OoC具有纵向流体空间,这些流体空间与ohc周围的流体相连。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
57
审稿时长
6-12 weeks
期刊介绍: JARO is a peer-reviewed journal that publishes research findings from disciplines related to otolaryngology and communications sciences, including hearing, balance, speech and voice. JARO welcomes submissions describing experimental research that investigates the mechanisms underlying problems of basic and/or clinical significance. Authors are encouraged to familiarize themselves with the kinds of papers carried by JARO by looking at past issues. Clinical case studies and pharmaceutical screens are not likely to be considered unless they reveal underlying mechanisms. Methods papers are not encouraged unless they include significant new findings as well. Reviews will be published at the discretion of the editorial board; consult the editor-in-chief before submitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信