T Scott Carlew, Eric Brenya, Mahbuba Ferdous, Ishita Banerjee, Lauren Donnelly, Eric Heinze, Josie King, Briana Sexton, Randy F Lacey, Arkadipta Bakshi, Gladys Alexandre, Brad M Binder
{"title":"Ethylene signals through an ethylene receptor to modulate biofilm formation and root colonization in a beneficial plant-associated bacterium.","authors":"T Scott Carlew, Eric Brenya, Mahbuba Ferdous, Ishita Banerjee, Lauren Donnelly, Eric Heinze, Josie King, Briana Sexton, Randy F Lacey, Arkadipta Bakshi, Gladys Alexandre, Brad M Binder","doi":"10.1371/journal.pgen.1011587","DOIUrl":null,"url":null,"abstract":"<p><p>Ethylene is a plant hormone involved in many aspects of plant growth and development as well as responses to stress. The role of ethylene in plant-microbe interactions has been explored from the perspective of plants. However, only a small number of studies have examined the role of ethylene in microbes. We demonstrated that Azospirillum brasilense contains a functional ethylene receptor that we call Azospirillum Ethylene Response1 (AzoEtr1) after the nomenclature used in plants. AzoEtr1 directly binds ethylene with high affinity. Treating cells with ethylene or disrupting the receptor reduces biofilm formation and colonization of plant root surfaces. Additionally, RNA sequencing and untargeted metabolomics showed that ethylene causes wide-spread metabolic changes that affect carbon and nitrogen metabolism. One result is the accumulation of poly-hydroxybutyrate. Our data suggests a model in which ethylene from host plants alters the density of colonization by A. brasilense and re-wires its metabolism, suggesting that the bacterium implements an adaptation program upon sensing ethylene. These data provide potential new targets to regulate beneficial plant-microbe interactions.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 2","pages":"e1011587"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011587","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Ethylene is a plant hormone involved in many aspects of plant growth and development as well as responses to stress. The role of ethylene in plant-microbe interactions has been explored from the perspective of plants. However, only a small number of studies have examined the role of ethylene in microbes. We demonstrated that Azospirillum brasilense contains a functional ethylene receptor that we call Azospirillum Ethylene Response1 (AzoEtr1) after the nomenclature used in plants. AzoEtr1 directly binds ethylene with high affinity. Treating cells with ethylene or disrupting the receptor reduces biofilm formation and colonization of plant root surfaces. Additionally, RNA sequencing and untargeted metabolomics showed that ethylene causes wide-spread metabolic changes that affect carbon and nitrogen metabolism. One result is the accumulation of poly-hydroxybutyrate. Our data suggests a model in which ethylene from host plants alters the density of colonization by A. brasilense and re-wires its metabolism, suggesting that the bacterium implements an adaptation program upon sensing ethylene. These data provide potential new targets to regulate beneficial plant-microbe interactions.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.