Encounter rates and engagement times limit the transmission of conjugative plasmids.

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
PLoS Genetics Pub Date : 2025-02-07 eCollection Date: 2025-02-01 DOI:10.1371/journal.pgen.1011560
Jorge Rodriguez-Grande, Yelina Ortiz, Daniel Garcia-Lopez, M Pilar Garcillán-Barcia, Fernando de la Cruz, Raul Fernandez-Lopez
{"title":"Encounter rates and engagement times limit the transmission of conjugative plasmids.","authors":"Jorge Rodriguez-Grande, Yelina Ortiz, Daniel Garcia-Lopez, M Pilar Garcillán-Barcia, Fernando de la Cruz, Raul Fernandez-Lopez","doi":"10.1371/journal.pgen.1011560","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmid conjugation is a major route for the dissemination of antibiotic resistances and adaptive genes among bacterial populations. Obtaining precise conjugation rates is thus key to understanding how antibiotic resistances spread. Plasmid conjugation is typically modeled as a density-dependent process, where the formation of new transconjugants depends on the rate of encounters between donor and receptor cells. By analyzing conjugation dynamics at different cell concentrations, here we show that this assumption only holds at very low bacterial densities. At higher cell concentrations, conjugation becomes limited by the engagement time, the interval required between two successful matings. Plasmid conjugation therefore follows a Holling´s Type II functional response, characterized by the encounter rate and the engagement time, which represent, respectively, the density and frequency-dependent limits of plasmid transmission. Our results demonstrate that these parameters are characteristic of the transfer machinery, rather than the entire plasmid genome, and that they are robust to environmental and transcriptional perturbation. Precise parameterization of plasmid conjugation will contribute to better understanding the propagation dynamics of antimicrobial resistances.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 2","pages":"e1011560"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828410/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011560","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmid conjugation is a major route for the dissemination of antibiotic resistances and adaptive genes among bacterial populations. Obtaining precise conjugation rates is thus key to understanding how antibiotic resistances spread. Plasmid conjugation is typically modeled as a density-dependent process, where the formation of new transconjugants depends on the rate of encounters between donor and receptor cells. By analyzing conjugation dynamics at different cell concentrations, here we show that this assumption only holds at very low bacterial densities. At higher cell concentrations, conjugation becomes limited by the engagement time, the interval required between two successful matings. Plasmid conjugation therefore follows a Holling´s Type II functional response, characterized by the encounter rate and the engagement time, which represent, respectively, the density and frequency-dependent limits of plasmid transmission. Our results demonstrate that these parameters are characteristic of the transfer machinery, rather than the entire plasmid genome, and that they are robust to environmental and transcriptional perturbation. Precise parameterization of plasmid conjugation will contribute to better understanding the propagation dynamics of antimicrobial resistances.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信