Neurophysiological Markers of Auditory Verbal Hallucinations in Patients with Schizophrenia: An EEG Microstates Study.

IF 2.3 3区 医学 Q3 CLINICAL NEUROLOGY
Shaobing Li, Ruxin Hu, Huiming Yan, Lijun Chu, Yuying Qiu, Ying Gao, Meijuan Li, Jie Li
{"title":"Neurophysiological Markers of Auditory Verbal Hallucinations in Patients with Schizophrenia: An EEG Microstates Study.","authors":"Shaobing Li, Ruxin Hu, Huiming Yan, Lijun Chu, Yuying Qiu, Ying Gao, Meijuan Li, Jie Li","doi":"10.1007/s10548-025-01105-2","DOIUrl":null,"url":null,"abstract":"<p><p>Alterations in the temporal characteristics of EEG microstates in patients with schizophrenia (SCZ) have been repeatedly found in previous studies. Nevertheless, altered temporal characteristics of EEG microstates in auditory verbal hallucinations (AVHs) SCZ are still unknown. This study aimed to investigate whether SCZ patients with sAVHs exhibit abnormal EEG microstates. We analyzed high-density electroencephalography data that from 79 SCZ patients, including 38 severe AVHs patients (sAVH group), 17 moderate auditory verbal hallucinations patients (mid-AVH group), and 24 without auditory verbal hallucinations patients (non-AVH group). Microstates were compared between three groups. Microstate C exhibited significant differences in duration and coverage and microstate B exhibited significant differences in occurrence between patients with sAVHs and without AVHs. There was a significant negative correlation between the coverage in microstate C and the severity of sAVH. Microstate C in duration, microstate B in occurrence were efficient in detecting sAVH patients. The decreased class C microstates in duration and coverage and increased class B microstates in occurrence may contribute to the severity of symptoms in AVH patients. Furthermore, we have identified that microstates C could serve as potential neurophysiological markers for detecting AVHs in SCZ patients. These results can provide potential avenues for therapeutic intervention of AVHs.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 2","pages":"29"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01105-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alterations in the temporal characteristics of EEG microstates in patients with schizophrenia (SCZ) have been repeatedly found in previous studies. Nevertheless, altered temporal characteristics of EEG microstates in auditory verbal hallucinations (AVHs) SCZ are still unknown. This study aimed to investigate whether SCZ patients with sAVHs exhibit abnormal EEG microstates. We analyzed high-density electroencephalography data that from 79 SCZ patients, including 38 severe AVHs patients (sAVH group), 17 moderate auditory verbal hallucinations patients (mid-AVH group), and 24 without auditory verbal hallucinations patients (non-AVH group). Microstates were compared between three groups. Microstate C exhibited significant differences in duration and coverage and microstate B exhibited significant differences in occurrence between patients with sAVHs and without AVHs. There was a significant negative correlation between the coverage in microstate C and the severity of sAVH. Microstate C in duration, microstate B in occurrence were efficient in detecting sAVH patients. The decreased class C microstates in duration and coverage and increased class B microstates in occurrence may contribute to the severity of symptoms in AVH patients. Furthermore, we have identified that microstates C could serve as potential neurophysiological markers for detecting AVHs in SCZ patients. These results can provide potential avenues for therapeutic intervention of AVHs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信