CB-MNCs@ CS/HEC/GP promote wound healing in aged murine pressure ulcer model.

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING
Zhi-Cheng Yang, He Lin, Guo-Jun Liu, Hui Pan, Jun-Lu Zhu, Xiao-Hong Zhang, Feng Gao, Zhong Wang, Zhi-Hao Wang
{"title":"CB-MNCs@ CS/HEC/GP promote wound healing in aged murine pressure ulcer model.","authors":"Zhi-Cheng Yang, He Lin, Guo-Jun Liu, Hui Pan, Jun-Lu Zhu, Xiao-Hong Zhang, Feng Gao, Zhong Wang, Zhi-Hao Wang","doi":"10.1186/s13287-025-04177-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Non-healing pressure ulcers impose heavy burdens on patients and clinicians. Cord blood mononuclear cells (CB-MNCs) are a novel type of tissue repair seed cells. However, their clinical application is restricted by low retention and survival rates post-transplantation. This study aims to investigate the role of thermo-sensitive chitosan/hydroxyethyl cellulose/glycerophosphate (CS/HEC/GP) hydrogel encapsulated CB-MNCs in pressure ulcer wound healing.</p><p><strong>Methods: </strong>Pressure ulcers were induced on the backs of aged mice. After construction and validation of the characterization of thermo-sensitive CS/HEC/GP hydrogel, CB-MNCs are encapsulated in the hydrogel, called CB-MNCs@CS/HEC/GP which was locally applied to the mouse wounds. Mouse skin tissues were harvested for histological and molecular biology analyses.</p><p><strong>Results: </strong>CB-MNCs@CS/HEC/GP therapy accelerated pressure ulcer wound healing, attenuated inflammatory responses, promoted cell proliferation, angiogenesis, and collagen synthesis. Further investigation revealed that CB-MNCs@CS/HEC/GP exerted therapeutic effects by promoting changes in cell types, including fibroblasts, endothelial cells, keratinocytes, and smooth muscle cells.</p><p><strong>Conclusion: </strong>CB-MNCs@CS/HEC/GP enhanced the delivery efficiency of CB-MNCs, preserved the cell viability, and contributed to pressure ulcer wound healing. Thus, CB-MNCs@CS/HEC/GP represents a novel therapeutic approach for skin regeneration of chronic wounds.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"52"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04177-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Non-healing pressure ulcers impose heavy burdens on patients and clinicians. Cord blood mononuclear cells (CB-MNCs) are a novel type of tissue repair seed cells. However, their clinical application is restricted by low retention and survival rates post-transplantation. This study aims to investigate the role of thermo-sensitive chitosan/hydroxyethyl cellulose/glycerophosphate (CS/HEC/GP) hydrogel encapsulated CB-MNCs in pressure ulcer wound healing.

Methods: Pressure ulcers were induced on the backs of aged mice. After construction and validation of the characterization of thermo-sensitive CS/HEC/GP hydrogel, CB-MNCs are encapsulated in the hydrogel, called CB-MNCs@CS/HEC/GP which was locally applied to the mouse wounds. Mouse skin tissues were harvested for histological and molecular biology analyses.

Results: CB-MNCs@CS/HEC/GP therapy accelerated pressure ulcer wound healing, attenuated inflammatory responses, promoted cell proliferation, angiogenesis, and collagen synthesis. Further investigation revealed that CB-MNCs@CS/HEC/GP exerted therapeutic effects by promoting changes in cell types, including fibroblasts, endothelial cells, keratinocytes, and smooth muscle cells.

Conclusion: CB-MNCs@CS/HEC/GP enhanced the delivery efficiency of CB-MNCs, preserved the cell viability, and contributed to pressure ulcer wound healing. Thus, CB-MNCs@CS/HEC/GP represents a novel therapeutic approach for skin regeneration of chronic wounds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信