Zhi-Cheng Yang, He Lin, Guo-Jun Liu, Hui Pan, Jun-Lu Zhu, Xiao-Hong Zhang, Feng Gao, Zhong Wang, Zhi-Hao Wang
{"title":"CB-MNCs@ CS/HEC/GP promote wound healing in aged murine pressure ulcer model.","authors":"Zhi-Cheng Yang, He Lin, Guo-Jun Liu, Hui Pan, Jun-Lu Zhu, Xiao-Hong Zhang, Feng Gao, Zhong Wang, Zhi-Hao Wang","doi":"10.1186/s13287-025-04177-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Non-healing pressure ulcers impose heavy burdens on patients and clinicians. Cord blood mononuclear cells (CB-MNCs) are a novel type of tissue repair seed cells. However, their clinical application is restricted by low retention and survival rates post-transplantation. This study aims to investigate the role of thermo-sensitive chitosan/hydroxyethyl cellulose/glycerophosphate (CS/HEC/GP) hydrogel encapsulated CB-MNCs in pressure ulcer wound healing.</p><p><strong>Methods: </strong>Pressure ulcers were induced on the backs of aged mice. After construction and validation of the characterization of thermo-sensitive CS/HEC/GP hydrogel, CB-MNCs are encapsulated in the hydrogel, called CB-MNCs@CS/HEC/GP which was locally applied to the mouse wounds. Mouse skin tissues were harvested for histological and molecular biology analyses.</p><p><strong>Results: </strong>CB-MNCs@CS/HEC/GP therapy accelerated pressure ulcer wound healing, attenuated inflammatory responses, promoted cell proliferation, angiogenesis, and collagen synthesis. Further investigation revealed that CB-MNCs@CS/HEC/GP exerted therapeutic effects by promoting changes in cell types, including fibroblasts, endothelial cells, keratinocytes, and smooth muscle cells.</p><p><strong>Conclusion: </strong>CB-MNCs@CS/HEC/GP enhanced the delivery efficiency of CB-MNCs, preserved the cell viability, and contributed to pressure ulcer wound healing. Thus, CB-MNCs@CS/HEC/GP represents a novel therapeutic approach for skin regeneration of chronic wounds.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"52"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04177-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Non-healing pressure ulcers impose heavy burdens on patients and clinicians. Cord blood mononuclear cells (CB-MNCs) are a novel type of tissue repair seed cells. However, their clinical application is restricted by low retention and survival rates post-transplantation. This study aims to investigate the role of thermo-sensitive chitosan/hydroxyethyl cellulose/glycerophosphate (CS/HEC/GP) hydrogel encapsulated CB-MNCs in pressure ulcer wound healing.
Methods: Pressure ulcers were induced on the backs of aged mice. After construction and validation of the characterization of thermo-sensitive CS/HEC/GP hydrogel, CB-MNCs are encapsulated in the hydrogel, called CB-MNCs@CS/HEC/GP which was locally applied to the mouse wounds. Mouse skin tissues were harvested for histological and molecular biology analyses.
Results: CB-MNCs@CS/HEC/GP therapy accelerated pressure ulcer wound healing, attenuated inflammatory responses, promoted cell proliferation, angiogenesis, and collagen synthesis. Further investigation revealed that CB-MNCs@CS/HEC/GP exerted therapeutic effects by promoting changes in cell types, including fibroblasts, endothelial cells, keratinocytes, and smooth muscle cells.
Conclusion: CB-MNCs@CS/HEC/GP enhanced the delivery efficiency of CB-MNCs, preserved the cell viability, and contributed to pressure ulcer wound healing. Thus, CB-MNCs@CS/HEC/GP represents a novel therapeutic approach for skin regeneration of chronic wounds.
期刊介绍:
Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.